## One-Bit Phase Retrieval: Optimal Rates and Efficient Algorithms

Junren Chen Department of Mathematics The University of Hong Kong

Joint work with Ming Yuan https://arxiv.org/abs/2405.04733

March 5, 2025

UC Irvine, Mathematics Combinatorics and Probability Seminar

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ● ■ のへで 1/45

## Outline

Introduction

**Optimal Rates** 

Efficient Algorithms

Simulations

**Open Questions** 

### 1-Bit Compressed Sensing

• Compressed sensing: recover k-sparse  $\mathbf{x} \in \mathbb{R}^n$  from

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \boldsymbol{\epsilon},\tag{1}$$

 $\mathbf{A} = [\mathbf{a}_1, \cdots, \mathbf{a}_m]^\top \in \mathbb{R}^{m \times n}$  with  $m \ll n$ .

▶ 1-bit compressed sensing: recover k-sparse  $\mathbf{x} \in \mathbb{S}^{n-1}$  from

$$\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x}); \tag{2}$$

we assume  $\mathbf{A} \sim \mathcal{N}^{m \times n}(0,1)$ 

- ▶ Optimal ℓ<sub>2</sub> error rate is Θ̃(<sup>k</sup>/<sub>m</sub>) [JLBB13]<sup>1</sup> (upper bound achieved by infeasible program). Two downsides:
  - ▶ Issue 1: Signal norm recovery is not possible (we assume  $\mathbf{x} \in \mathbb{S}^{n-1}$ )
  - Issue 2: In general hard to go beyond Gaussian design [ALPV14]<sup>2</sup>

• Using dithers  $\tau \sim \text{Unif}([-\lambda, \lambda]^m)$  addresses both issues  $[\mathsf{DM21}]^3$ :

$$\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x} + \boldsymbol{\tau}) \tag{3}$$

- Signals with bounded  $\ell_2$  norm
- A has independent sub-Gaussian rows

<sup>2</sup>One-bit compressed sensing with non-Gaussian measurements

 $^{3}$ Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing (  $\Xi$  )  $\Xi$   $^{9}$   $^{0}$   $^{0}$   $^{3/45}$ 

<sup>&</sup>lt;sup>1</sup>Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors

### 1-Bit Compressed Sensing

- ▶ Normalized Binary Iterative Hard Thresholding an efficient algorithm to achieve  $\tilde{O}(\frac{k}{m})$  [MM24]<sup>4</sup>
- ► Hamming distance loss  $\mathcal{L}_{hd}(\mathbf{u}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\operatorname{sign}(\mathbf{a}_i^{\top} \mathbf{u}) \neq y_i)$ =  $\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(-y_i \mathbf{a}_i^{\top} \mathbf{u} \ge 0) \longrightarrow$  Hinge loss

$$\mathcal{L}(\mathbf{u}) = \frac{1}{2m} \sum_{i=1}^{m} \left( -y_i \mathbf{a}_i^\top \mathbf{u} + |\mathbf{a}_i^\top \mathbf{u}| \right)$$
(4)



▶ NBIHT starts with *arbitrary*  $\mathbf{x}^{(0)} \in \mathbb{S}^{n-1}$  and produces

$$\mathbf{x}^{(t+1)} = \frac{\mathsf{T}_{(k)}(\mathbf{x}^{(t)} - \eta \cdot \partial \mathcal{L}(\mathbf{x}^{(t)}))}{\|\mathsf{T}_{(k)}(\mathbf{x}^{(t)} - \eta \cdot \partial \mathcal{L}(\mathbf{x}^{(t)}))\|_2}, \quad t = 0, 1, \cdots$$
(5)

where  $\partial \mathcal{L}(\mathbf{u}) = \frac{1}{2m} \sum_{i=1}^{m} \left( \operatorname{sign}(\mathbf{a}_{i}^{\top} \mathbf{u}) - \operatorname{sign}(\mathbf{a}_{i}^{\top} \mathbf{x}) \right) \mathbf{a}_{i}$ 

### Phase Retrieval

- In many applications we only observe the magnitude  $|\mathbf{a}_i^{\top} \mathbf{x}|$  [SECCMS15]<sup>5</sup>
- ▶ Phase retrieval: the recovery of  $\mathbf{x} \in \mathbb{R}^n$  from  $\mathbf{y} = |\mathbf{A}\mathbf{x}|$

Similarity to solving linear systems (solve  $\mathbf{x} \in \mathbb{R}^n$  from  $\mathbf{y} = \mathbf{A}\mathbf{x}$ ):

- All  $\mathbf{x} \in \mathbb{R}^n$  can be exactly recovered to  $\{\pm \mathbf{x}\}$  from generic  $\mathbf{A} \in \mathbb{R}^{(2n-1) \times n}$ [BCE06];<sup>6</sup>
- ▶ All  $\mathbf{x} \in \mathbb{C}^n$  can be recovered to  $\{e^{\mathbf{i}\theta}\mathbf{x} : \theta \in \mathbb{R}\}$  from generic  $\mathbb{C}^{(4n-4) \times n}$ [BCE06]:
- **x** can be recovered from many efficient algorithms such as (truncated) Wirtinger flow [CLS15],<sup>7</sup> [CC17]<sup>8</sup> from O(n) Gaussian measurements;
- Randomized Kaczmarz also works for phase retrieval [TV19]:<sup>9</sup>
- Sparse phase retrieval resembles compressed sensing in terms of sample complexity  $\tilde{O}(k \log \frac{n}{k})$  [EM14],<sup>10</sup> with a major difference on sample complexity for efficient algorithm  $\tilde{O}(k^2)$

<sup>&</sup>lt;sup>5</sup>Phase Retrieval with Application to Optical Imaging: A contemporary overview

<sup>&</sup>lt;sup>6</sup>On signal reconstruction without phase

<sup>&</sup>lt;sup>7</sup>Phase retrieval via Wirtinger flow: Theory and algorithms

<sup>&</sup>lt;sup>8</sup>Solving random quadratic systems of equations is nearly as easy as solving linear systems <sup>9</sup>Phase retrieval via randomized Kaczmarz: theoretical guarantees

<sup>▲□▶ ▲□▶ ▲≧▶ ▲≧▶ ≧ ∽�� 5/45</sup> 

<sup>&</sup>lt;sup>10</sup>Phase retrieval: Stability and recovery guarantees

### 1-Bit Phase Retrieval

Question:

How to achieve phase retrieval from quantized measurements?

Why is this interesting?

- The loss of phase and quantization are both ubiquitous;
- Quantized phase retrieval is not theoretically well understood [DB22];<sup>11</sup>
- Is quantized phase retrieval *similar* to quantized compressed sensing in some sense?
- New contributions to the well-developed area of quantized compressed sensing.



 $^{11}$ Phase Retrieval by Binary Questions: Which Complementary Subspace is Closer?  $\bullet$   $\Xi$   $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$ 

### 1-Bit Phase Retrieval

Our problem setup:

- We deal with 1-bit phase retrieval
- $\operatorname{sign}(|\mathbf{a}_i^{\top}\mathbf{x}|) = 1 \longrightarrow \operatorname{no information!}$
- $\blacktriangleright$  We use positive quantization threshold  $\tau>0$  and observe

$$\mathbf{y} = \operatorname{sign}(|\mathbf{A}\mathbf{x}| - \tau) \tag{6}$$

• We assume  $\mathbf{A} \sim \mathcal{N}^{m \times n}(0, 1)$  and for some  $\beta \geq \alpha > 0$ :

$$\mathbf{x} \in \mathbb{A}^{\beta}_{\alpha} := \{ \mathbf{u} \in \mathbb{R}^{n} : \alpha \le \|\mathbf{u}\|_{2} \le \beta \}$$
(7)

We study two cases:

- 1-bit phase retrieval (1bPR): x is unstructured
- 1-bit sparse phase retrival (1bSPR): x is k-sparse

### Overview of this Talk

This talk demonstrates that:

Major findings in 1bCS theory, including *hyperplane tessellation*, *optimal rates* and *efficient algorithms*, can also be established in phase retrieval

In other words,

In some sense, phase information is inessential for 1bCS

| Model | У                                                                      | x                                    | opti. rate                    | opti. alg sample |
|-------|------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------------|
| 1bCS  | $\mathbf{y} = \mathrm{sign}(\mathbf{A}\mathbf{x})$                     | $\Sigma^n_k\cap \mathbb{S}^{n-1}$    | $	ilde{\Theta}(rac{k}{m})$   | $	ilde{O}(k)$    |
| D1bCS | $\mathbf{y} = \mathrm{sign}(\mathbf{A}\mathbf{x} + \boldsymbol{\tau})$ | $\Sigma_k^n \cap \mathbb{B}_2^n$     | $	ilde{\Theta}(rac{k}{m})$   | $	ilde{O}(k)$    |
| 1bPR  | $\mathbf{y} = \operatorname{sign}( \mathbf{A}\mathbf{x}  - \tau)$      | $\mathbb{A}^1_{1/2}$                 | $	ilde{\Theta}(rac{n}{m})$   | $	ilde{O}(n)$    |
| 1bSPR | $\mathbf{y} = \operatorname{sign}( \mathbf{A}\mathbf{x}  - \tau)$      | $\Sigma_k^n \cap \mathbb{A}^1_{1/2}$ | $\tilde{\Theta}(\frac{k}{m})$ | $	ilde{O}(k^2)$  |

## Outline

Introduction

### **Optimal Rates**

Efficient Algorithms

Simulations

**Open Questions** 

#### Ideal Program & Tessellation

The best program is to minimize hamming distance loss over signal set:

$$\hat{\mathbf{x}}_{hdm} = \arg\min_{\mathbf{u} \in \mathbb{A}^{\beta}_{\alpha}(\cap \Sigma^{n}_{k})} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left(\operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{u}| - \tau) \neq y_{i}\right)$$
(8)

- ▶ In the noiseless case with  $y_i = \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{x}| \tau)$ , (8) returns estimates having same measurements as  $\mathbf{x}$ :  $\operatorname{sign}(|\mathbf{A}\hat{\mathbf{x}}_{hdm}| \tau) = \operatorname{sign}(|\mathbf{A}\mathbf{x}| \tau)$
- $\begin{array}{l} \bullet \quad \mathcal{H}_{\mathbf{a}_{i},\tau} := \{ \mathbf{u} \in \mathbb{R}^{n} : \mathbf{a}_{i}^{\top} \mathbf{u} = \tau \} \longrightarrow \\ \mathcal{H}_{|\mathbf{a}_{i}|,\tau} := \{ \mathbf{u} \in \mathbb{R}^{n} : |\mathbf{a}_{i}^{\top} \mathbf{u}| = \tau \} = \mathcal{H}_{\mathbf{a}_{i},\tau} \cup \mathcal{H}_{\mathbf{a}_{i},-\tau} \end{array}$
- Geometric interpretation:



#### Local Tessellation (Local Binary Embedding)

- Arbitrary signal set:  $\mathcal{K} \subset \mathbb{A}^{\beta}_{\alpha} \xrightarrow{\text{localize}} \mathcal{K}_{(r)} := (\mathcal{K} \mathcal{K}) \cap \mathbb{B}^{n}_{2}(r)$
- Gaussian width  $\omega(\mathcal{K}) := \mathbb{E} \sup_{\mathbf{u} \in \mathcal{K}} |\langle \mathbf{g}, \mathbf{u} \rangle|$  where  $\mathbf{g} \sim \mathcal{N}(0, \mathbf{I}_n)$
- Covering number  $\mathcal{N}(\mathcal{K}, r)$ ; metric entropy  $\mathcal{H}(\mathcal{K}, r) = \log \mathcal{N}(\mathcal{K}, r)$

$$\bullet \operatorname{dist}(\mathbf{u}, \mathbf{v}) = \min\{\|\mathbf{u} - \mathbf{v}\|_2, \|\mathbf{u} + \mathbf{v}\|_2\}$$

#### Theorem 2.1: Phaseless Gaussian Hyperplane Tessellation

Under Gaussian dary positive  $\beta \geq \alpha$  and  $\tau$ , for small enough r > 0 we let  $r' = \frac{c_1 r}{\log^{1/2}(r^{-1})}$  (for some small  $c_1$ ). If

$$m \gtrsim \frac{\omega^2(\mathcal{K}_{(3r'/2)})}{r^3} + \frac{\log \mathscr{N}(\mathcal{K}, r')}{r}$$
(9)

then w.p.  $\geq 1 - \exp(-\Omega(rm))$  we have:

• Any  $\mathbf{u}, \mathbf{v} \in \mathcal{K}$  obeying  $\operatorname{dist}(\mathbf{u}, \mathbf{v}) \leq \frac{r'}{2}$  satisfy

$$m^{-1}d_H(\operatorname{sign}(|\mathbf{A}\mathbf{u}|-\tau),\operatorname{sign}(|\mathbf{A}\mathbf{v}|-\tau)) \le C_2 r$$
 (10)

• Any  $\mathbf{u}, \mathbf{v} \in \mathcal{K}$  obeying  $\operatorname{dist}(\mathbf{u}, \mathbf{v}) \geq 2r$  satisfy

$$m^{-1}d_H(\operatorname{sign}(|\mathbf{A}\mathbf{u}|-\tau),\operatorname{sign}(|\mathbf{A}\mathbf{v}|-\tau)) \ge c_3\operatorname{dist}(\mathbf{u},\mathbf{v})$$
 (11)

### Implications

Information-theoretic recovery guarantees:

If

$$m \gtrsim \frac{\omega^2(\mathcal{K}_{(3r'/2)})}{r^3} + \frac{\log \mathscr{N}(\mathcal{K}, r')}{r}, \tag{12}$$

then

$$\operatorname{dist}(\hat{\mathbf{x}}_{hdm}, \mathbf{x}) < 2r, \quad \forall \mathbf{x} \in \mathcal{K}$$
(13)

• If 
$$\mathcal{K} \subset \mathcal{C}$$
 for a cone  $\mathcal{C}$ ,  
$$m = \tilde{O}\left(\frac{\omega^2((\mathcal{C} - \mathcal{C}) \cap \mathbb{B}_2^n) + \log \mathscr{N}(\mathcal{K}, r')}{\omega^2(\mathcal{C} - \mathcal{C}) \cap \mathbb{B}_2^n}\right)$$

r

implies uniform recovery accuracy of 2r.

- (1bPR)  $\mathcal{C} = \mathbb{R}^n, \mathcal{K} = \mathbb{A}^{\beta}_{\alpha} \longrightarrow r = \tilde{O}(\frac{n}{m})$
- $\blacktriangleright \text{ (1bSPR) } \mathcal{C} = \Sigma_k^n, \mathcal{K} = \Sigma_k^n \cap \mathbb{A}_{\alpha}^{\beta} \longrightarrow r = \tilde{O}(\frac{k}{m})$

(14)

### **Proof Sketch**

Similar results appeared in 1bCS literature [OR15],<sup>12</sup> [DM21], built upon a covering argument along with the well-known probabilistic observation (∀u, v ∈ S<sup>n-1</sup>)

$$\mathbb{P}\left(\operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{u})\neq\operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{v})\right)=\frac{\operatorname{arccos}(\langle\mathbf{u},\mathbf{v}\rangle)}{\pi}\asymp\|\mathbf{u}-\mathbf{v}\|_{2}.$$
 (15)

▶ We largely follow their arguments but need a novel relation  $(\forall \mathbf{u}, \mathbf{v} \in \mathbb{A}^{\beta}_{\alpha})$ 

$$\mathsf{P}_{\mathbf{u},\mathbf{v}} := \mathbb{P}\Big(\mathrm{sign}(|\mathbf{a}_i^{\top}\mathbf{u}| - \tau) \neq \mathrm{sign}(|\mathbf{a}_i^{\top}\mathbf{v}| - \tau)\Big) \asymp \mathrm{dist}(\mathbf{u},\mathbf{v})$$
(16)

Actually, to get similar results under sub-Gaussian design, we only need

$$\mathsf{P}_{\mathbf{u},\mathbf{v}} \gtrsim \operatorname{dist}(\mathbf{u},\mathbf{v}),$$
 (17)

$$\mathbb{P}(||\mathbf{a}_i^\top \mathbf{u}| - \tau| \le r) \lesssim r,\tag{18}$$

see the unified framework in [CY24b]<sup>13</sup>

<sup>&</sup>lt;sup>12</sup>Near-optimal bounds for binary embeddings of arbitrary sets

 $<sup>^{13}</sup>$ Optimal quantized compressed sensinig via projected gradient descent (  $\Xi$  ) (  $\Xi$  ) (  $\Xi$  )  $^{13}$ Oc  $^{13/45}$ 

### Lower Bounds

Is the upper bounds  $\tilde{O}(\frac{n}{m})$  and  $\tilde{O}(\frac{k}{m})$  tight? Yes — up to log!

#### Theorem 2.2: Lower Bounds for 1-Bit (Sparse) PR

For arbitrary known  $(\mathbf{A}, \tau)$  we have the following:

Any estimator  $\hat{\mathbf{x}}$  for recovering  $\mathbf{x} \in \mathbb{A}_1^2$  from  $\operatorname{sign}(|\mathbf{A}\mathbf{x}| - \tau)$  obeys  $\sup_{\mathbf{x} \in \mathbb{A}_1^2} \operatorname{dist}(\hat{\mathbf{x}}, \mathbf{x}) \gtrsim \frac{n}{m}$ 

• Any estimator  $\hat{\mathbf{x}}$  for recovering  $\mathbf{x} \in \Sigma_k^n \cap \mathbb{A}_1^2$  from  $\operatorname{sign}(|\mathbf{A}\mathbf{x}| - \tau)$  obeys  $\sup_{\mathbf{x} \in \Sigma_k^n \cap \mathbb{A}_1^2} \operatorname{dist}(\hat{\mathbf{x}}, \mathbf{x}) \gtrsim \frac{k}{m}$ 

Counting argument: let  $V_d$  be a *d*-dimensional space in  $\mathbb{R}^n$ 

- ► Number of y:  $|\{\operatorname{sign}(|\mathbf{A}\mathbf{x}| \tau) : \mathbf{x} \in \mathsf{V}_d\}|$  $\leq |\{\operatorname{sign}(\mathbf{A}\mathbf{x} - \tau) : \mathbf{x} \in \mathsf{V}_d\}| + |\{\operatorname{sign}(\mathbf{A}\mathbf{x} + \tau) : \mathbf{x} \in \mathsf{V}_d\}| \leq 2(\frac{em}{d})^d \ll 2^m$
- An  $\epsilon$ -packing of  $V_d \cap \mathbb{A}^2_1$  with cardinality greater than  $(\frac{2}{\epsilon})^d$

Thus

$$2\left(\frac{em}{l}\right)^d \ge \left(\frac{2}{\epsilon}\right)^d \quad \longrightarrow \quad \epsilon \gtrsim \frac{d}{m}.$$
 (19)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 14/45

## Outline

Introduction

**Optimal Rates** 

Efficient Algorithms

Simulations

**Open Questions** 

## NBIHT for 1bCS [MM24]

- ► Hinge loss  $\mathcal{L}(\mathbf{u}) = \frac{1}{2m} \sum_{i=1}^{m} (-y_i \mathbf{a}_i^\top \mathbf{u} + |\mathbf{a}_i^\top \mathbf{u}|)$  with (sub-)gradient  $\partial \mathcal{L}(\mathbf{u}) = \frac{1}{2m} \sum_{1}^{m} (\operatorname{sign}(\mathbf{a}_i^\top \mathbf{u}) \operatorname{sign}(\mathbf{a}_i^\top \mathbf{x})) \mathbf{a}_i := \mathbf{h}(\mathbf{u}, \mathbf{x})$
- ► NBIHT:  $\tilde{\mathbf{x}}^{(t+1)} = \mathsf{T}_{(k)}(\mathbf{x}^{(t)} \eta \cdot \partial \mathcal{L}(\mathbf{x}^{(t)})), \ \mathbf{x}^{(t+1)} = \tilde{\mathbf{x}}^{(t+1)} / \|\tilde{\mathbf{x}}^{(t+1)}\|_2$
- $\blacktriangleright \text{ Optimization: } \|\mathbf{x}^{(t+1)} \mathbf{x}\|_2 \leq 4 \|\mathbf{x}^{(t)} \mathbf{x} \eta \cdot \mathbf{h}(\mathbf{x}^{(t)}, \mathbf{x})\|_{(\Sigma_{2k}^{n,*})^{\circ}}$
- ▶ HD Probability  $\longrightarrow$  Restricted Approximate Invertibility Condition (RAIC) [FJPY21],<sup>14</sup> [MM24],  $\forall \mathbf{u}, \mathbf{v} \in \Sigma_k^{n,*}$ ,

$$\|\mathbf{u} - \mathbf{v} - \eta \cdot \partial \mathbf{h}(\mathbf{u}, \mathbf{v})\|_{(\Sigma_{2k}^{n,*})^{\circ}} \le \tilde{O}(\frac{k}{m}) + \sqrt{\tilde{O}(\frac{k}{m})}\|\mathbf{u} - \mathbf{v}\|_{2}$$
(20)



▶ Optimization:  $\|\mathbf{x}^{(t+1)} - \mathbf{x}\|_2 \leq \tilde{O}(\frac{k}{m}) + \sqrt{\tilde{O}(\frac{k}{m})} \|\mathbf{x}^{(t)} - \mathbf{x}\|_2$  $\longrightarrow$  fast quadratic convergence taking  $O(\log(\log(m/k)))$  steps

 $<sup>^{14}</sup>$ NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rate  $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{16/45}$ 

### Our Algorithm

- ► Hamming distance loss:  $\mathcal{L}_{hd}(\mathbf{u}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\operatorname{sign}(|\mathbf{a}_i^\top \mathbf{u}| \tau) \neq y_i)$ =  $\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(-y_i(|\mathbf{a}_i^\top \mathbf{u}| - \tau) \geq 0)$
- ► Use the same idea  $\mathbb{1}(u \ge 0) \longrightarrow \max\{u, 0\} = \frac{u+|u|}{2}$  to get (nonconvex) Hinge loss  $\mathcal{L}(\mathbf{u}) = \frac{1}{2m} \sum_{i=1}^{m} \left[ ||\mathbf{a}_{i}^{\top}\mathbf{u}| - \tau| - y_{i}(|\mathbf{a}_{i}^{\top}\mathbf{u}| - \tau) \right]$ , with

$$\partial \mathcal{L}(\mathbf{u}) = \frac{1}{2m} \sum_{i=1}^{m} \left( \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{u}| - \tau) - \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{x}| - \tau) \right) \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{u}) \mathbf{a}_{i}$$
$$\mathbf{h}(\mathbf{u}, \mathbf{v}) := \frac{1}{2m} \sum_{i=1}^{m} \left( \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{u}| - \tau) - \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{v}| - \tau) \right) \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{u}) \mathbf{a}_{i}$$

1bPR:

► Spectral initialization  $\mathbf{x}^{(0)}$ : leading eigenvector of  $\hat{\mathbf{S}} = \frac{1}{m} \sum_{i=1}^{m} y_i \mathbf{a}_i \mathbf{a}_i^{\top}$ ► GD:  $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)} - \eta \cdot \partial \mathcal{L}(\mathbf{x}^{(t-1)}), \quad t = 1, 2, 3, \cdots$ 

1bSPR:

Spectral initialization x<sup>(0)</sup>: leading eigenvector of a submatrix of Ŝ
 PGD: x<sup>(t)</sup> = T<sub>(k)</sub>(x<sup>(t-1)</sup> − η · ∂L(x<sup>(t-1)</sup>)), t = 1, 2, 3, ···

### **Optimal Guarantees**

#### Theorem 3.1: GD is Optimal for 1bPR

If  $m\gtrsim n$ , then w.h.p., running GD with spectral initialization and  $\eta=\sqrt{\frac{\pi e}{2}}\tau$  uniformly recovers all  $\mathbf{x}\in\mathbb{A}_{\alpha}^{\beta}$  to

dist
$$(\mathbf{x}^{(t)}, \mathbf{x}) \lesssim \frac{n}{m} \log^2\left(\frac{m}{n}\right), \quad \forall t \gtrsim \log\left(\frac{m}{n}\right).$$
 (21)

#### Theorem 3.2: PGD is Optimal for 1bSPR

If  $m \gtrsim k^2 \log(n) \log^2(\frac{m}{k})$ ,  $\frac{\tau}{\alpha} \le C_1$ ,  $\frac{\beta}{\tau} \le C_2$ , then w.h.p., running PGD with spectral initialization and  $\eta = \sqrt{\frac{\pi e}{2}}\tau$  recovers a  $\mathbf{x} \in \Sigma_k^n \cap \mathbb{A}_{\alpha}^{\beta}$  to

$$\operatorname{dist}(\mathbf{x}^{(t)}, \mathbf{x}) \lesssim \frac{k}{m} \log\left(\frac{mn}{k^2}\right) \log\left(\frac{m}{k}\right), \quad \forall t \gtrsim \log\left(\frac{m}{k}\right).$$
(22)

 Õ(k<sup>2</sup>) in sparse case is needed in initialization (a widely existing gap)

 Need Õ(k<sup>3</sup>) to ensure uniform recovery

#### Proof: What to Bound

• Spectral method 
$$\longrightarrow \|\mathbf{x}^{(0)} - \mathbf{x}\|_2 \le \delta_4$$

Per-iterate analysis:

1bPR:

$$\|\mathbf{x}^{(t)} - \mathbf{x}\|_{2} = \|\mathbf{x}^{(t-1)} - \mathbf{x} - \eta \cdot \partial \mathcal{L}(\mathbf{x}^{(t-1)})\|_{2}$$
$$= \|\mathbf{x}^{(t-1)} - \mathbf{x} - \eta \cdot \mathbf{h}(\mathbf{x}^{(t-1)}, \mathbf{x})\|_{2}$$

1bSPR:

$$\begin{aligned} \|\mathbf{x}^{(t)} - \mathbf{x}\|_{2} &\leq 2 \|\mathcal{T}_{(2k)}(\mathbf{x}^{(t-1)} - \mathbf{x} - \eta \cdot \partial \mathcal{L}(\mathbf{x}^{(t-1)}))\|_{2} \\ &= 2 \|\mathcal{T}_{(2k)}(\mathbf{x}^{(t-1)} - \mathbf{x} - \eta \cdot \mathbf{h}(\mathbf{x}^{(t-1)}, \mathbf{x}))\|_{2} \end{aligned}$$

For cone C with  $C_{-} = C - C$ , we want to bound

 $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}-\mathbf{v}-\eta\cdot\mathbf{h}(\mathbf{u},\mathbf{v}))\|_{2},\quad\forall\mathbf{u},\mathbf{v}\in\mathcal{C}_{\alpha,\beta}:=\mathcal{C}\cap\mathbb{A}_{\alpha}^{\beta},$ 

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ = のQ @ 19/45</p>

#### Definition 3.1: Phaseless Local AIC (PLL-AIC)

Given  $\beta_1 \geq \alpha_1 > 0$  and  $\tau > 0$ ,  $\mathbf{A} = [\mathbf{a}_1^\top, \cdots, \mathbf{a}_m^\top]^\top \in \mathbb{R}^{m \times n}$ , a cone  $\mathcal{C}$ , a step size  $\eta$ , and certain non-negative scalars  $\boldsymbol{\delta} = (\delta_1, \delta_2, \delta_3, \delta_4)^\top$ , we say  $(\mathbf{A}, \tau, \mathcal{C}, \eta)$  respects  $(\alpha_1, \beta_1, \boldsymbol{\delta})$ -PLL-AIC if

$$\begin{split} \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u} - \mathbf{v} - \eta \cdot \mathbf{h}(\mathbf{u}, \mathbf{v}))\|_{2} &\leq \delta_{1} \|\mathbf{u} - \mathbf{v}\|_{2} + \sqrt{\delta_{2} \cdot \|\mathbf{u} - \mathbf{v}\|_{2}} + \delta_{3}, \\ \forall \mathbf{u}, \mathbf{v} \in \mathcal{C}_{\alpha_{1}, \beta_{1}} \text{ obeying } \|\mathbf{u} - \mathbf{v}\|_{2} &\leq \delta_{4}, \end{split}$$

where  $\mathbf{h}(\mathbf{u},\mathbf{v})$  denotes the subgradient at  $\mathbf{u}$  when  $\mathbf{v}$  is underlying signal:  $\mathbf{h}(\mathbf{u},\mathbf{v}) = \frac{1}{2m} \sum_{i=1}^{m} \left( \mathrm{sign}(|\mathbf{a}_i^\top \mathbf{u}| - \tau) - \mathrm{sign}(|\mathbf{a}_i^\top \mathbf{v}| - \tau) \right) \mathrm{sign}(\mathbf{a}_i^\top \mathbf{u}) \mathbf{a}_i$ 

- The linear term ' $\delta_1 \|\mathbf{u} \mathbf{v}\|$ ' is necessary if  $\mathbf{x} \in \mathbb{A}^{\beta}_{\alpha}$  with  $\beta > \alpha$
- Local:  $\|\mathbf{u} \mathbf{v}\|_2 \le \delta_4 \longleftarrow$  spectral method;
- $\blacktriangleright \text{ Meaning: } \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u} \mathbf{v} \eta \mathbf{h}(\mathbf{u}, \mathbf{v}))\|_{2} = \|\mathbf{u} \mathbf{v} \eta \mathbf{h}(\mathbf{u}, \mathbf{v})\|_{(\mathcal{C}_{-} \cap \mathbb{S}^{n-1})^{\circ}}$



▶ Phaseless: it holds for  $\mathbf{v}$   $\iff$  it holds for  $\neg \mathbf{v}$ ,  $\langle \mathbf{P} \rangle$ ,  $\langle \mathbf$ 

#### Proof: PLL-AIC $\longrightarrow$ Convergence

Why is AIC useful? Prove  $\delta_2, \delta_3 = \tilde{O}(\text{optimal rate}), \ \delta_1 \approx F(\eta), \ \delta_4 \approx \frac{1}{\sqrt{\log \pi}}$ 

- $\|\mathbf{x}^{(0)} \mathbf{x}\|_2 \le \delta_4$  ensured by spectral method
- ▶ 1bPR ( $C = \mathbb{R}^n$ ): if  $\|\mathbf{x}^{(t-1)} \mathbf{x}\| \gg \tilde{O}(n/m)$

$$\begin{aligned} \|\mathbf{x}^{(t)} - \mathbf{x}\|_{2} &\stackrel{raic}{\leq} \delta_{1} \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} + \sqrt{\tilde{O}(n/m)} \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} + \tilde{O}(n/m) \\ &\leq (\delta_{1} + \epsilon_{1}) \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} \leq (1 - \epsilon_{2}) \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} \end{aligned}$$

▶ 1bSPR (
$$\mathcal{C} = \Sigma_k^n$$
): if  $\|\mathbf{x}^{(t-1)} - \mathbf{x}\|_2 \gg \tilde{O}(k/m)$ 

$$\begin{aligned} \|\mathbf{x}^{(t)} - \mathbf{x}\|_{2} & \leq 2\delta_{1} \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} + \sqrt{\tilde{O}(k/m)} \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} + \tilde{O}(k/m) \\ & \leq (2\delta_{1} + \epsilon_{1}) \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} \leq (1 - \epsilon_{2}) \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} \end{aligned}$$

We obtain (at least) linear convergence to optimal error rates

#### Proof: Gaussian A Respects RAIC

#### Theorem 3.3: Gaussian A Respects PLL-AIC

Suppose  $\mathbf{A} \sim \mathcal{N}^{m \times n}(0, 1)$ ,  $\beta \geq \alpha > 0, \tau > 0$ , C is a cone. For some constants  $c_i$ 's and  $C_i$ 's depending on  $(\alpha, \beta, \tau)$ , if  $r \in (0, c_1)$ ,

$$m \ge \frac{C_2[\mathscr{H}(\mathcal{C}_{\alpha,\beta},r) + \omega^2(\mathcal{C}_{(1)})]}{r},$$
(23)

then with probability at least  $1 - \exp(-c_3 \mathscr{H}(\mathcal{C}_{\alpha,\beta},r))$ ,  $(\mathbf{A},\tau,\mathcal{C},\eta)$  respects  $(\alpha,\beta,\boldsymbol{\delta})$ -PLL-AIC with

$$\begin{split} \delta_1 &= \sup_{a^2+b^2 \in [\alpha^2,\beta^2]} \sqrt{|1 - \eta g_\eta(a,b)|^2 + |\eta h_\eta(a,b)|^2} + c_3 \log^{-1/8}(r^{-1}) \\ \delta_2 &= C_4 r, \ \delta_3 = C_5 r \log(r^{-1}), \ \delta_4 = \frac{c_5}{\log^{1/2}(r^{-1})} \end{split}$$
  
where  $g_\eta(a,b) &= \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\tau^2}{2(a^2+b^2)}\right) \frac{\tau^2 a^2 + b^2(a^2+b^2)}{(a^2+b^2)^{5/2}} \text{ and } h_\eta(a,b) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\tau^2}{2(a^2+b^2)}\right) \frac{ab(a^2+b^2-\tau^2)}{(a^2+b^2)^{5/2}}. \end{split}$ 

#### **Proof: Covering Framework**

The goal is to bound  $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u} - \mathbf{v} - \eta \cdot \mathbf{h}(\mathbf{u}, \mathbf{v}))\|_2$  for all  $\mathbf{u}, \mathbf{v} \in \mathcal{C}_{\alpha_1, \beta_1}$  obeying  $\|\mathbf{u} - \mathbf{v}\|_2 \leq \delta_4$ . We use a covering argument:

- Let  $\mathcal{N}_r$  be a minimal *r*-net of  $\mathcal{C}_{\alpha,\beta}$
- $\blacktriangleright \ \mathbf{u}_1, \mathbf{v}_1 \in \mathcal{N}_r \text{ closest to } \mathbf{u}, \mathbf{v}, \text{ respectively, } \|\mathbf{u} \mathbf{u}_1\|_2, \|\mathbf{v} \mathbf{v}_1\|_2 \leq r$
- $||\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}-\mathbf{v}-\eta\mathbf{h}(\mathbf{u},\mathbf{v}))||_{2} \leq 2r + ||\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}_{1}-\mathbf{v}_{1}-\eta\mathbf{h}(\mathbf{u},\mathbf{v}))||_{2}$
- Large-distance regime  $(||\mathbf{u}_1 \mathbf{v}_1||_2 \ge r)$ :

$$\begin{aligned} & \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}_{1} - \mathbf{v}_{1} - \eta \mathbf{h}(\mathbf{u}, \mathbf{v}))\|_{2} \\ & \leq \underbrace{\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}_{1} - \mathbf{v}_{1} - \eta \mathbf{h}(\mathbf{u}_{1}, \mathbf{v}_{1}))\|_{2}}_{\text{discrete AIC}} + \eta \underbrace{\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u}, \mathbf{v}) - \mathbf{h}(\mathbf{u}_{1}, \mathbf{v}_{1}))\|_{2}}_{\text{gradient mismatch}} \end{aligned}$$
(24)

Small-distance regime 
$$(\|\mathbf{u}_1 - \mathbf{v}_1\|_2 < r)$$
:  
 $\|\mathcal{P}_{\mathcal{C}_-}(\mathbf{u}_1 - \mathbf{v}_1 - \eta \mathbf{h}(\mathbf{u}, \mathbf{v}))\|_2 \le r + \eta \cdot \underbrace{\|\mathcal{P}_{\mathcal{C}_-}(\mathbf{h}(\mathbf{u}, \mathbf{v}))\|_2}_{\text{gradient}}$  (25)

### Proof: Simplify the Gradient

$$\mathbf{h}(\mathbf{u},\mathbf{v}) = \frac{1}{2m} \sum_{i=1}^{m} \left( \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{u}| - \tau) - \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{v}| - \tau) \right) \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{u}) \mathbf{a}_{i}$$

Introduce two index sets

$$\mathbf{R}_{\mathbf{p},\mathbf{q}} = \left\{ i \in [m] : \operatorname{sign}(|\mathbf{a}_i^{\top} \mathbf{p}| - \tau) \neq \operatorname{sign}(|\mathbf{a}_i^{\top} \mathbf{q}| - \tau) \right\}$$
(26)

$$\mathbf{L}_{\mathbf{p},\mathbf{q}} = \left\{ i \in [m] : \operatorname{sign}(\mathbf{a}_i^\top \mathbf{p}) \neq \operatorname{sign}(\mathbf{a}_i^\top \mathbf{q}) \right\}$$
(27)

 $\blacktriangleright$  Then we find  $\mathbf{h}(\mathbf{p},\mathbf{q})=\mathbf{h}_1(\mathbf{p},\mathbf{q})+\mathbf{h}_2(\mathbf{p},\mathbf{q})$  where

$$\mathbf{h}_{1}(\mathbf{p},\mathbf{q}) = \frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{p},\mathbf{q}}} \operatorname{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}-\mathbf{q}))\mathbf{a}_{i},$$
(28)

$$\mathbf{h}_{2}(\mathbf{p},\mathbf{q}) = \frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{p},\mathbf{q}} \cap \mathbf{L}_{\mathbf{p},\mathbf{q}}} \left[ \operatorname{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}+\mathbf{q})) - \operatorname{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}-\mathbf{q})) \right] \mathbf{a}_{i}$$
(29)

- ▶  $\mathbf{h}_1(\mathbf{p}, \mathbf{q})$  is the main term and close to 1bCS gradient  $\frac{1}{m} \sum_{i \in \mathbf{L}_{\mathbf{p}, \mathbf{q}}} \operatorname{sign}(\mathbf{a}_i^{\top}(\mathbf{p} - \mathbf{q})) \mathbf{a}_i$
- $h_2(p,q)$  is a negligible higher-order term

### Proof: Large-distance Regime



From (24), we need to bound

 $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}_{1} - \mathbf{v}_{1} - \eta \mathbf{h}(\mathbf{u}_{1}, \mathbf{v}_{1}))\|_{2} \text{ uniformly over} \\ \mathcal{N}_{r, \delta_{4}}^{(2)} := \{(\mathbf{p}, \mathbf{q}) \in \mathcal{N}_{r} \times \mathcal{N}_{r} : \|\mathbf{p} - \mathbf{q}\|_{2} \in [r, 2\delta_{4}]\}, \text{ and by } \mathbf{h} = \mathbf{h}_{1} + \mathbf{h}_{2} \\ \text{we only need to bound}$ 

$$\begin{split} & \mathsf{Term1:} \ \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{u}_{1} - \mathbf{v}_{1} - \eta \mathbf{h}_{1}(\mathbf{u}_{1}, \mathbf{v}_{1}))\|_{2}, \quad (\mathbf{u}_{1}, \mathbf{v}_{1}) \in \mathcal{N}_{r, \delta_{4}}^{(2)} \\ & \mathsf{Term2:} \ \eta \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}_{2}(\mathbf{u}_{1}, \mathbf{v}_{1}))\|_{2}, \quad (\mathbf{u}_{1}, \mathbf{v}_{1}) \in \mathcal{N}_{r, \delta_{4}}^{(2)} \\ & \blacktriangleright \ \mathsf{Term3:} \ \eta \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u}, \mathbf{v}) - \mathbf{h}(\mathbf{u}_{1}, \mathbf{v}_{1}))\|_{2} \end{split}$$

### Proof: Small-distance Regime



From (25) we need to bound

Term4:  $\eta \| \mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u}, \mathbf{v})) \|_2$  uniformly over all  $\mathbf{u}, \mathbf{v} \in \mathcal{C}_{\alpha, \beta}$  obeying  $\| \mathbf{u} - \mathbf{v} \|_2 \leq 3r$ .

#### Proof: Bounding Term 1

Bound  $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{p}-\mathbf{q}-\eta\mathbf{h}_{1}(\mathbf{p},\mathbf{q}))\|_{2}$  for all  $(\mathbf{p},\mathbf{q}) \in \mathcal{N}_{r,\delta_{4}}^{(2)}$ :

$$|\mathcal{N}_{r,\delta_4}^{(2)}| \le |\mathcal{N}_r|^2 = [\mathscr{N}(\mathcal{C}_{\alpha,\beta},r)]^2$$

 $\blacktriangleright$  Only need to bound it for fixed  $(\mathbf{p},\mathbf{q})$  — followed by union bound

Orthogonal decomposition:

▶ Useful parameterization: we can find orthonormal  $\beta_1 = \frac{u-v}{\|u-v\|_2}$  and  $\beta_2$  such that

$$\mathbf{p} = u_1 \boldsymbol{\beta}_1 + u_2 \boldsymbol{\beta}_2, \quad \mathbf{q} = v_1 \boldsymbol{\beta}_1 + u_2 \boldsymbol{\beta}_2$$

for some  $u_1, u_2, v_1$  obeying  $u_1 > v_1$  and  $u_2 \ge 0$ . Then we have

$$\mathbf{h}_1(\mathbf{p},\mathbf{q}) = \langle \mathbf{h}_1(\mathbf{p},\mathbf{q}), eta_1 
angle eta_1 + \langle \mathbf{h}_1(\mathbf{p},\mathbf{q}), eta_2 
angle eta_2 \\ + \underbrace{\left\{ \mathbf{h}_1(\mathbf{p},\mathbf{q}) - \langle \mathbf{h}_1(\mathbf{p},\mathbf{q}), eta_1 
angle eta_1 - \langle \mathbf{h}_1(\mathbf{p},\mathbf{q}), eta_2 
angle eta_2 
ight\}}_{:=\mathbf{h}_1^\perp(\mathbf{p},\mathbf{q})}.$$

⟨h<sub>1</sub>(p,q),β<sub>1</sub>⟩β<sub>1</sub> is the main term to cancel out p − q
 We need to control the effect of ⟨h<sub>1</sub>(p,q),β<sub>2</sub>⟩β<sub>2</sub> and h<sup>⊥</sup><sub>1</sub>(p,q)

## Proof: Bounding Term 1

$$\begin{aligned} \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{p}-\mathbf{q}-\eta\cdot\mathbf{h}_{1}(\mathbf{p},\mathbf{q}))\|_{2} \\ &\leq \left\|\mathbf{p}-\mathbf{q}-\eta\cdot\langle\mathbf{h}_{1}(\mathbf{p},\mathbf{q}),\boldsymbol{\beta}_{1}\rangle\boldsymbol{\beta}_{1}-\eta\cdot\langle\mathbf{h}_{1}(\mathbf{p},\mathbf{q}),\boldsymbol{\beta}_{2}\rangle\boldsymbol{\beta}_{2}\right\|_{2}+\eta\cdot\left\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}_{1}^{\perp}(\mathbf{p},\mathbf{q}))\right\|_{2} \\ &\leq \left(\left\|\mathbf{p}-\mathbf{q}\|_{2}-\eta\cdot\left\langle\mathbf{h}_{1}(\mathbf{p},\mathbf{q}),\frac{\mathbf{p}-\mathbf{q}}{\|\mathbf{p}-\mathbf{q}\|_{2}}\right\rangle\right|^{2}+\eta^{2}\cdot\left|\langle\mathbf{h}_{1}(\mathbf{p},\mathbf{q}),\boldsymbol{\beta}_{2}\rangle\right|^{2}\right)^{1/2} \\ &+\eta\cdot\left\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}_{1}^{\perp}(\mathbf{p},\mathbf{q}))\right\|_{2} \\ &:=\left((T_{1}^{\mathbf{p},\mathbf{q}})^{2}+\eta^{2}\cdot|T_{2}^{\mathbf{p},\mathbf{q}}|^{2}\right)^{1/2}+\eta\cdot T_{3}^{\mathbf{p},\mathbf{q}},\end{aligned}$$
(30)

where

$$T_1^{\mathbf{p},\mathbf{q}} := \left| \|\mathbf{p} - \mathbf{q}\|_2 - \eta \cdot \left\langle \mathbf{h}_1(\mathbf{p},\mathbf{q}), \frac{\mathbf{p} - \mathbf{q}}{\|\mathbf{p} - \mathbf{q}\|_2} \right\rangle \right|, \tag{31}$$

$$T_2^{\mathbf{p},\mathbf{q}} := \langle \mathbf{h}_1(\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_2 \rangle, \quad T_3^{\mathbf{p},\mathbf{q}} := \|\mathcal{P}_{\mathcal{C}_-}(\mathbf{h}_1^{\perp}(\mathbf{p},\mathbf{q}))\|_2$$
(32)

▶ Need to separately bound  $T_1^{\mathbf{p},\mathbf{q}}, T_2^{\mathbf{p},\mathbf{q}}, T_3^{\mathbf{p},\mathbf{q}}$ 

### Proof: Bounding Term 1 (Example: Bound $T_1^{\mathbf{p},\mathbf{q}}$ )

The ideas in bounding  $T_i^{\mathbf{p},\mathbf{q}}$ , i = 1, 2, 3 are similar. Use  $T_1^{\mathbf{p},\mathbf{q}}$  as an example:  $T_1^{\mathbf{p},\mathbf{q}} = \left| \|\mathbf{p} - \mathbf{q}\|_2 - \frac{\eta}{m} \sum_{i \in \mathbf{R}_{\mathbf{p},\mathbf{q}}} |\mathbf{a}_i^\top \beta_1| \right|$  $\leq \eta \left| \underbrace{\frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{p},\mathbf{q}}} |\mathbf{a}_i^\top \beta_1| - \mathbb{E} \left[ \mathbb{1}(i \in \mathbf{R}_{\mathbf{p},\mathbf{q}}) |\mathbf{a}_i^\top \beta_1| \right]}_{\text{Concentration term}} + \underbrace{\left| \|\mathbf{p} - \mathbf{q}\|_2 - \eta \mathbb{E} \left[ \mathbb{1}(i \in \mathbf{R}_{\mathbf{p},\mathbf{q}}) |\mathbf{a}_i^\top \beta_1| \right] \right|}_{\text{Deviation}} \right|$ 

Careful calculation shows: Deviation = ||**p** - **q**||<sub>2</sub>(1 - ηf(**p**, **q**) + o(1))
 Conditioning on **R**<sub>**p**,**q**</sub> with cardinality r<sub>**p**,**q**</sub>, we have

$$\frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{p}, \mathbf{q}}} |\mathbf{a}_i^\top \beta_1| \sim \frac{1}{m} \sum_{i=1}^{r_{\mathbf{p}, \mathbf{q}}} Z_i^{\mathbf{p}, \mathbf{q}}$$
(33)

where we let  $a_1, a_2 \stackrel{iid}{\sim} \mathcal{N}(0, 1)$ 

$$\begin{split} Z_{i}^{\mathbf{p},\mathbf{q}} &\stackrel{iid}{\sim} |\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}| \Big\{ \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{p}|-\tau) \neq \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{q}|-\tau) \Big\} \\ &\sim |\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}| \Big\{ \operatorname{sign}(|u_{1}\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}+u_{2}\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{2}|-\tau) \neq \operatorname{sign}(|v_{1}\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}+u_{2}\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{2}|-\tau) \Big\} \\ &\sim |a_{1}| \Big\{ \operatorname{sign}(|u_{1}a_{1}+u_{2}a_{2}|-\tau) \neq \operatorname{sign}(|v_{1}a_{1}+u_{2}a_{2}|-\tau) \Big\} \end{split}$$

Proof: Bounding Term 1 (Example: Bound  $T_1^{\mathbf{p},\mathbf{q}}$ )

- ▶ Show that  $Z_i^{\mathbf{p},\mathbf{q}}$  are sub-Gaussian:
  - Write down the P.D.F. of  $Z_i^{\mathbf{p},\mathbf{q}}$ ;
  - Show the tail of P.D.F. is bounded by some Gaussian tail (tedious!);
- ► This shows conditional concentration: conditioning on  $\{|\mathbf{R}_{\mathbf{p},\mathbf{q}}| = r_{\mathbf{p},\mathbf{q}}\}$ , with prob.  $\geq 1 2\exp(-4\log \mathscr{H}(\mathcal{C}_{\alpha,\beta},r))$ ,

concentration term 
$$\leq \frac{|r_{\mathbf{p},\mathbf{q}} - m\mathsf{P}_{\mathbf{p},\mathbf{q}}| + \sqrt{r_{\mathbf{p},\mathbf{q}}\mathscr{H}(\mathcal{C}_{\alpha,\beta},r)}}{m}$$

► Remains to analyze  $|\mathbf{R}_{\mathbf{p},\mathbf{q}}| \sim \text{Bin}(m, \mathsf{P}_{\mathbf{p},\mathbf{q}})$ . By Chernoff bound, with prob.  $\geq 1 - 2 \exp(-4 \log \mathscr{H}(\mathcal{C}_{\alpha,\beta}, r))$ ,

$$\left| \left| \mathbf{R}_{\mathbf{p},\mathbf{q}} \right| - m \mathsf{P}_{\mathbf{p},\mathbf{q}} \right| \le \sqrt{12m \mathsf{P}_{\mathbf{p},\mathbf{q}} \mathscr{H}(\mathcal{C}_{\alpha,\beta},r)}$$

► Final bound: Concentration term  $\lesssim \sqrt{\frac{\|\mathbf{p}-\mathbf{q}\|_2 \mathscr{H}(\mathcal{C}_{\alpha,\beta},r)}{m}}$ 

#### Proof: Bounding Terms 2, 3, 4

$$\begin{split} \text{Term 2:} \quad & \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}_{2}(\mathbf{p},\mathbf{q}))\|_{2}, \quad \forall (\mathbf{p},\mathbf{q}) \in \mathcal{N}_{r,\delta_{4}}^{(2)} \\ \text{Term 3:} \quad & \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u},\mathbf{v})-\mathbf{h}(\mathbf{u}_{1},\mathbf{v}_{1}))\|_{2}, \quad \|\mathbf{u}-\mathbf{u}_{1}\|_{2}, \|\mathbf{v}-\mathbf{v}_{1}\|_{2} \leq r \\ \text{Term 4:} \quad & \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u},\mathbf{v}))\|_{2}, \quad \|\mathbf{u}-\mathbf{v}\|_{2} \leq 3r, \\ \text{where } \mathbf{h}(\mathbf{u},\mathbf{v}) = \frac{1}{2m} \sum_{i \in \mathbf{R}_{\mathbf{p},\mathbf{q}}} \left( \text{sign}(|\mathbf{a}_{i}^{\top}\mathbf{u}|-\tau) - \text{sign}(|\mathbf{a}_{i}^{\top}\mathbf{v}|-\tau) \right) \text{sign}(\mathbf{a}_{i}^{\top}\mathbf{u}) \mathbf{a}_{i} \\ \mathbf{h}_{2}(\mathbf{p},\mathbf{q}) = \frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{p},\mathbf{q}} \cap \mathbf{L}_{\mathbf{p},\mathbf{q}}} \left[ \text{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}+\mathbf{q})) - \text{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}-\mathbf{q})) \right] \mathbf{a}_{i} \end{split}$$

- Challenge: Terms 3,4 involve infinitely many points  $\mathbf{u}$  and  $\mathbf{v}$
- Remedy: local binary embedding! [OR15], [DM21]; see also (10)

### Proof: Bounding Terms 2, 3, 4

#### Lemma 3.1: Uniform Bound on Partial Sum of Squares (e.g., [DM21])

Let  $\mathbf{a}_1, ..., \mathbf{a}_m$  be independent random vectors in  $\mathbb{R}^n$  satisfying  $\mathbb{E}(\mathbf{a}_i \mathbf{a}_i^\top) = \mathbf{I}_n$  and  $\max_i \|\mathbf{a}_i\|_{\psi_2} \leq L$ . For some given given  $\mathcal{W} \subset \mathbb{R}^n$  and  $1 \leq \ell \leq m$ , there exist constants  $C_1, c_2$  depending only on L such that the event

$$\sup_{\mathbf{x}\in\mathcal{W}}\max_{\substack{I\subset[m]\\|I|\leq\ell}} \left(\frac{1}{\ell}\sum_{i\in I} |\langle \mathbf{a}_i, \mathbf{x}\rangle|^2\right)^{1/2} \leq C_1 \left(\frac{\omega(\mathcal{W})}{\sqrt{\ell}} + \operatorname{rad}(\mathcal{W})\sqrt{\log\left(\frac{em}{\ell}\right)}\right)$$
  
holds with probability at least  $1 - 2\exp(-c_2\ell\log(\frac{em}{\ell}))$ .

By the above Lemma, it suffices to show the number of summands in Terms 2,3,4 are fewer than  $\tilde{O}(mr)$ , for instance:

$$\begin{split} \|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}_{2}(\mathbf{p},\mathbf{q}))\|_{2} &= \sup_{\mathbf{w}\in\mathcal{C}_{-}\cap\mathbb{B}_{2}^{n}} \langle \mathbf{w}, \mathbf{h}_{2}(\mathbf{p},\mathbf{q}) \rangle \\ &= \sup_{\mathbf{w}\in\mathcal{C}_{-}\cap\mathbb{B}_{2}^{n}} \frac{1}{m} \sum_{i\in\mathbf{R}_{\mathbf{p},\mathbf{q}}\cap\mathbf{L}_{\mathbf{p},\mathbf{q}}} \left[ \operatorname{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}+\mathbf{q})) - \operatorname{sign}(\mathbf{a}_{i}^{\top}(\mathbf{p}-\mathbf{q})) \right] \mathbf{a}_{i}^{\top} \mathbf{w} \\ &\leq \sup_{\mathbf{w}\in\mathcal{C}_{-}\cap\mathbb{B}_{2}^{n}} \max_{\substack{S\subset[m]\\|S|=\tilde{O}(mr)}} \frac{2|\mathbf{a}_{i}^{\top}\mathbf{w}|}{m} \qquad \blacktriangleright \text{ number of summands is uniformly small} \\ &= \tilde{O}(r) \qquad \qquad \blacksquare \text{ By Lemma 3.1} \end{split}$$

Number of Summands in Term 2:  $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}_{2}(\mathbf{p},\mathbf{q}))\|_{2}, \ (\mathbf{p},\mathbf{q}) \in \mathcal{N}_{r,\delta_{4}}^{(2)}$ 

$$\blacktriangleright \ \, \mathsf{Control} \ \, |\mathbf{R}_{\mathbf{p},\mathbf{q}}\cap \mathbf{L}_{\mathbf{p},\mathbf{q}}| \ \, \mathsf{over} \ \, \mathcal{N}^{(2)}_{r,\delta_4}$$

► 
$$|\mathbf{R}_{\mathbf{p},\mathbf{q}} \cap \mathbf{L}_{\mathbf{p},\mathbf{q}}| \sim \operatorname{Bin}(m, \mathbf{P}_{\mathbf{p},\mathbf{q}}^{(2)})$$
, where  
 $\mathbf{P}_{\mathbf{p},\mathbf{q}}^{(2)} := \mathbb{P}(i \in \mathbf{R}_{\mathbf{p},\mathbf{q}} \cap \mathbf{L}_{\mathbf{p},\mathbf{q}}) = \mathbb{P}\left( \begin{array}{c} \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{p}| - \tau) \neq \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{q}| - \tau) \\ \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{p}) \neq \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{q}| - \tau) \end{array} \right)$   
►  $\mathbf{P}_{\mathbf{p},\mathbf{q}}^{(2)} \leq 4 \exp(-\frac{\tau^{2}}{2\|\mathbf{p}-\mathbf{q}\|_{2}^{2}})$ , in stark contrast to:  
►  $\mathbf{P}_{\mathbf{p},\mathbf{q}} = \mathbb{P}(\operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{p}| - \tau) \neq \operatorname{sign}(|\mathbf{a}_{i}^{\top}\mathbf{q}| - \tau)) \asymp \operatorname{dist}(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_{2}$   
►  $\mathbb{P}(i \in \mathbf{L}_{\mathbf{p},\mathbf{q}}) = \mathbb{P}(\operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{p}) \neq \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{q})) \asymp \|\mathbf{p}-\mathbf{q}\|_{2}$   
►  $\mathbb{P}(i \in \mathbf{L}_{\mathbf{p},\mathbf{q}}) = \mathbb{P}(\operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{p}) \neq \operatorname{sign}(\mathbf{a}_{i}^{\top}\mathbf{q})) \asymp \|\mathbf{p}-\mathbf{q}\|_{2}$   
►  $\mathbb{P}_{\mathbf{p},\mathbf{q}}^{(2)} \ll \mathbb{P}_{\mathbf{p},\mathbf{q}} \text{ as } \|\mathbf{p}-\mathbf{q}\|_{2} \leq \delta_{4} \asymp \frac{1}{\log^{1/2}(r^{-1})} = o(1)$   
 $\longrightarrow |\mathbf{R}_{\mathbf{p},\mathbf{q}} \cap \mathbf{L}_{\mathbf{p},\mathbf{q}}| \lesssim \frac{mr}{\log^{1/2}(r^{-1})}, \forall (\mathbf{p},\mathbf{q}) \in \mathcal{N}_{r,\delta_{4}}^{(2)}$   
 $\mathbf{a}_{i} \in \mathbf{L}_{\mathbf{p}_{3},\mathbf{q}_{3}}, \mathbf{a}_{i} \in \mathbf{R}_{\mathbf{p}_{3},\mathbf{q}_{3}}$   
Double separation is much more stringent for small  $\|\mathbf{p}-\mathbf{q}\|_{2}$ 

#### Number of Summands in Terms 3, 4

Recall that Term 3 is

 $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u},\mathbf{v})-\mathbf{h}(\mathbf{u}_{1},\mathbf{v}_{1}))\|_{2}, \quad (\|\mathbf{u}-\mathbf{u}_{1}\|_{2},\|\mathbf{v}-\mathbf{v}_{1}\|_{2} \leq r)$ 

Term 4 is

$$\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u},\mathbf{v}))\|_{2}, \quad (\|\mathbf{u}-\mathbf{v}\|_{2} \leq 3r)$$

How can we bound number of separations over infinite set?

 — Local binary embedding! [OR15], [DM21]

#### Theorem 3.4: Local Binary Embedding

For small enough 
$$r > 0$$
 and  $r' = \frac{c_1 r}{\log^{1/2}(r^{-1})}$  for some small  $c_1$ . If  $m \gtrsim \frac{\omega^2(\mathcal{K}_{(3r'/2)})}{r^3} + \frac{\log \mathscr{N}(\mathcal{K}, r')}{r}$ , then with prob.  $\geq 1 - \exp(-\Omega(rm))$  we have:

- ► (1bPR embeding; This work) Any  $\mathbf{u}, \mathbf{v} \in \mathcal{K} \subset \mathbb{A}^{\beta}_{\alpha}$  obeying dist $(\mathbf{u}, \mathbf{v}) \leq \frac{r'}{2}$  satisfy  $|\mathbf{R}_{\mathbf{u}, \mathbf{v}}| \leq mr$
- ▶ (1bCS embeding; [OR15]) Any  $\mathbf{u}, \mathbf{v} \in \mathcal{K} \subset \mathbb{S}^{n-1}$  obeying  $\|\mathbf{u} \mathbf{v}\|_2 \leq r'$ satisfy  $|\mathbf{L}_{\mathbf{u},\mathbf{v}}| \lesssim mr$

#### Number of Summands in Terms 3, 4

- It directly works out for Term 4:
  - No more than  $|\mathbf{R}_{\mathbf{p},\mathbf{q}}|$  summands;  $\|\mathbf{u} \mathbf{v}\|_2 \leq 3r$
- lssue with Term 3  $\|\mathcal{P}_{\mathcal{C}_{-}}(\mathbf{h}(\mathbf{u},\mathbf{v})-\mathbf{h}(\mathbf{u}_{1},\mathbf{v}_{1}))\|_{2}$ :
  - No more than  $|\mathbf{R}_{\mathbf{u},\mathbf{v}}| + |\mathbf{R}_{\mathbf{u}_1,\mathbf{v}_1}|$  summands
  - $\blacktriangleright \text{ However, we do not have tight enough bound on } |\mathbf{R}_{u,v}| \text{ and } |\mathbf{R}_{u_1,v_1}|, \text{ as } u \text{ and } v, \text{ and } u_1 \text{ and } v_1, \text{ are not close enough.}$
  - More precisely,  $\|\mathbf{u} \mathbf{v}\|_2$  and  $\|\mathbf{u}_1 \mathbf{v}_1\|_2$  are not on a scale of  $\tilde{O}(r)$



#### Number of Summands in Terms 3, 4

- ► We need a rearrangement of  $\mathbf{h}(\mathbf{u}, \mathbf{v}) \mathbf{h}(\mathbf{u}_1, \mathbf{v}_1)$  to get tighter bound  $\mathbf{h}(\mathbf{u}_1, \mathbf{v}_1) - \mathbf{h}(\mathbf{u}, \mathbf{v})$   $= \frac{1}{2m} \sum_{i=1}^m \left[ \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{v}| - \tau) - \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{v}_1| - \tau) \right] \operatorname{sign}(\mathbf{a}_i^\top \mathbf{u}_1) \mathbf{a}_i$   $+ \frac{1}{2m} \sum_{i=1}^m \left[ \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{u}_1| - \tau) - \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{u}| - \tau) \right] \operatorname{sign}(\mathbf{a}_i^\top \mathbf{u}_1) \mathbf{a}_i$  $+ \frac{1}{2m} \sum_{i=1}^m \left[ \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{u}) - \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{u}|) \right] \left[ \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{v}| - \tau) - \operatorname{sign}(|\mathbf{a}_i^\top \mathbf{u}| - \tau) \right] \mathbf{a}_i,$
- No more than |**R**<sub>v,v1</sub>| + |**R**<sub>u,u1</sub>| + |**L**<sub>u,u1</sub>| summands
   ||**u u**<sub>1</sub>||<sub>2</sub>, ||**v v**<sub>1</sub>||<sub>2</sub> ≤ r → no more than Õ(mr) summands

## Outline

Introduction

**Optimal Rates** 

Efficient Algorithms

Simulations

**Open Questions** 

## Synthetic Data

We test the case of  $\|\mathbf{x}\|_2 = 1$ :



Figure: Phases are non-essential in solving 1-bit linear system (Left;  $\mathbf{x} \in \mathbb{S}^{29}$ ) and in 1-bit compressed sensing (Right;  $\mathbf{x} \in \Sigma_3^{500,*}$ ).

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ → ⊃ < ♡ < ? 38/45

## Synthetic Data

We test the case of  $\mathbf{x} \in \mathbb{A}^{\beta}_{\alpha}$   $(\beta \geq \alpha)$ :



Figure: Full Signal Reconstruction over  $\mathbb{A}_{\alpha,\beta}$  in 1-bit phase retrieval (Left;  $\mathbf{x} \in \mathbb{R}^{30}$ ) and 1-bit sparse phase retrieval (Right;  $\mathbf{x} \in \Sigma_3^{500}$ ).

### **Real Images**



(a) Original image: Milky Way Galaxy.



(b) Recovered image after SI-1bPR (L = 64): relative error = 0.270, PSNR = 25.14.



(c) Recovered image after GD-1bPR (L = 64): relative error = 0.029, PSNR = 44.65.

Figure: Recovering the  $1080 \times 1980 \times 3$  Milky Way Galaxy image from phaseless bits produced by CDP with L = 64 random patterns.

## Outline

Introduction

**Optimal Rates** 

Efficient Algorithms

Simulations

**Open Questions** 

## Random Initialization

Question:

For 1bPR, can gradient descent start from random initialization?

Literature (phase retrieval):

- Optimization landscape (no polynomial time algorithm): [SQW18]<sup>15</sup>
- No sample splitting: [CCFM19]<sup>16</sup>
- Sample splitting with sharp rate [CPD23]<sup>17</sup>
- Stochastic GD: [TV23]<sup>18</sup>



Simulations: m = 10nStart with a snower convergence [CCFM19]

<sup>15</sup>A geometric analysis of phase retrieval

<sup>16</sup>Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval

<sup>17</sup>Sharp global convergence guarantees for iterative nonconvex optimization with random data

### Other Questions

- Can we extend to complex case  $\mathbf{y} = \operatorname{sign}(|\mathbf{\Phi}\mathbf{x}| \tau)$  where  $\mathbf{\Phi} \in \mathbb{C}^{m \times n}$  and  $\mathbf{x} \in \mathbb{C}^n$ ?
  - Randomized Kaczmarz;
  - Random initialization;
- Can we go beyond Gaussian design?
  - Sub-Gaussian matrix [KL17];<sup>19</sup>
  - Structured sensing matrix;
- Can we extend the results to multi-bit?
  - This relies on dithering in compressed sensing [XJ20].<sup>20</sup>
- Can we precisely compare the errors in 1-bit sensing and 1-bit phase retrieval?
  - Precise bounds are lacking in nonlinear structured problems;
  - See [CPD23] for unstructured case with sample splitting.
- Can we develop some practical applications?

# **Thank You**

<sup>19</sup>Phase retrieval without small-ball probability assumptions

 $^{20}$ Quantized compressive sensing with rip matrices: The benefit of dithering > ( $\Xi>$ )  $\Xi=$   $\circ$  ( $\circ$   $_{43/45}$ 

#### References

- (JLBB13) L. Jacques, J. N. Laska, P. T. Boufounos, Richard G. Baraniuk. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors, IEEE Trans. Inf. Theory, 2013.
- (ALPV14) A. Ai, A. Lapanowski, Y. Plan, R. Vershynin. One-bit compressed sensing with non-Gaussian measurements, Linear Algebra and its Applications, 2014.
  - (DM21) S. Dirksen, S. Mendelson. Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing, Journal of the European Mathematical Society, 2021.
  - (MM24) N. Matsumoto, A Mazumdar. Binary iterative hard thresholding converges with optimal number of measurements for 1-bit compressed sensing, Journal of the ACM, 2024.
- (SECCMS15) Y. Shechtman, Y. Eldar, O. Cohen, H. N. Chapman, J. Miao, M. Segev. Phase retrieval with application to optical imaging: a contemporary overview, IEEE signal processing magazine, 2015.
  - (BCE06) R. Balan, P. Casazza, D. Edidin. On signal reconstruction without phase, Applied and Computational Harmonic Analysis, 2006.
  - (CLS15) E. J. Candes, X. Li, M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory and algorithms, IEEE Trans. Inf. Theory, 2015
  - (CC17) Y. Chen, E. J. Candes. Solving random quadratic systems of equations is nearly as easy as solving linear systems, Communications on pure and applied Mathematics, 2017.
  - (TV19) Y. S. Tan, R. Vershynin. Phase retrieval via randomized Kaczmarz: theoretical guarantees. Information and Inference: A Journal of the IMA, 2019.
  - (EM14) Y. Eldar, S. Mendelson. Phase retrieval: Stability and recovery guarantees. Applied and Computational Harmonic Analysis, 2014.

#### References

- (DB22) D. Domel-White, B. G. Bodmann. Phase Retrieval by Binary Questions: Which Complementary Subspace is Closer? Constructive Approximation, 2022.
- (OR15) S Oymak, B Recht. Near-optimal bounds for binary embeddings of arbitrary sets, arXiv preprint arXiv:1512.04433, 2015.
- (CY24b) J. Chen, M. Yuan. Optimal quantized compressed sensing via projected gradient descent, arXiv preprint arXiv:2407.04951, 2024.
- (FJPY21) M. P. Friedlander, H. Jeong, Y. Plan, Ö. Yılmaz. NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rate, IEEE Transactions on Information Theory, 2021.
- (SQW18) J. Sun, Q. Qu, J. Wright. A geometric analysis of phase retrieval, Foundations of Computational Mathematics, 2018.
- (CCFM19) Y. Chen, Y. Chi, J. Fan, C. Ma. Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval, Mathematical Programming, 2019.
  - (CPD23) K. A. Chandrasekher, A. Pananjady, C. Thrampoulidis. Sharp global convergence guarantees for iterative nonconvex optimization with random data, The Annals of Statistics, 2023.
    - (TV23) Y. S. Tan, R. Vershynin. Online stochastic gradient descent with arbitrary initialization solves non-smooth, non-convex phase retrieval, Journal of Machine Learning Research, 2023.
    - (KL17) F. Krahmer, Y. K. Liu. Phase retrieval without small-ball probability assumptions, IEEE Transactions on Information Theory, 2017.
    - (XJ20) C Xu, L Jacques. Quantized compressive sensing with rip matrices: The benefit of dithering, Information and Inference: A Journal of the IMA, 2020.