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1-Bit Compressed Sensing

▶ Compressed sensing: recover k-sparse x ∈ Rn from

y = Ax+ ϵ, (1)

A = [a1, · · · ,am]⊤ ∈ Rm×n with m≪ n.

▶ 1-bit compressed sensing: recover k-sparse x ∈ Sn−1 from

y = sign(Ax); (2)

we assume A ∼ Nm×n(0, 1)

▶ Optimal ℓ2 error rate is Θ̃( k
m
) [JLBB13]1 (upper bound achieved by

infeasible program). Two downsides:
▶ Issue 1: Signal norm recovery is not possible (we assume x ∈ Sn−1)
▶ Issue 2: In general hard to go beyond Gaussian design [ALPV14]2

▶ Using dithers τ ∼ Unif([−λ, λ]m) addresses both issues [DM21]3:

y = sign(Ax+ τ ) (3)

▶ Signals with bounded ℓ2 norm
▶ A has independent sub-Gaussian rows

1Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors
2One-bit compressed sensing with non-Gaussian measurements
3Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing
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1-Bit Compressed Sensing

▶ Normalized Binary Iterative Hard Thresholding — an efficient algorithm
to achieve Õ( k

m
) [MM24]4

▶ Hamming distance loss Lhd(u) =
1
m

∑m
i=1 1(sign(a

⊤
i u) ̸= yi)

= 1
m

∑m
i=1 1(−yia

⊤
i u ≥ 0) −→ Hinge loss

L(u) =
1

2m

m∑
i=1

(
− yia

⊤
i u+ |a⊤

i u|
)

(4)
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▶ NBIHT starts with arbitrary x(0) ∈ Sn−1 and produces

x(t+1) =
T(k)(x

(t) − η · ∂L(x(t)))

∥T(k)(x
(t) − η · ∂L(x(t)))∥2

, t = 0, 1, · · · (5)

where ∂L(u) = 1
2m

∑m
i=1

(
sign(a⊤

i u)− sign(a⊤
i x)

)
ai

4Binary iterative hard thresholding converges with optimal number of measurements for 1-bit
compressed sensing
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Phase Retrieval

▶ In many applications we only observe the magnitude |a⊤
i x| [SECCMS15]5

▶ Phase retrieval: the recovery of x ∈ Rn from y = |Ax|

Similarity to solving linear systems (solve x ∈ Rn from y = Ax):

▶ All x ∈ Rn can be exactly recovered to {±x} from generic
A ∈ R(2n−1)×n[BCE06];6

▶ All x ∈ Cn can be recovered to {eiθx : θ ∈ R} from generic C(4n−4)×n

[BCE06];

▶ x can be recovered from many efficient algorithms such as (truncated)
Wirtinger flow [CLS15],7 [CC17]8 from O(n) Gaussian measurements;

▶ Randomized Kaczmarz also works for phase retrieval [TV19];9

▶ Sparse phase retrieval resembles compressed sensing in terms of sample
complexity Õ(k log n

k
) [EM14],10 with a major difference on sample

complexity for efficient algorithm Õ(k2)

5Phase Retrieval with Application to Optical Imaging: A contemporary overview
6On signal reconstruction without phase
7Phase retrieval via Wirtinger flow: Theory and algorithms
8Solving random quadratic systems of equations is nearly as easy as solving linear systems
9Phase retrieval via randomized Kaczmarz: theoretical guarantees

10Phase retrieval: Stability and recovery guarantees
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1-Bit Phase Retrieval
Question:

How to achieve phase retrieval from quantized measurements?

Why is this interesting?

▶ The loss of phase and quantization are both ubiquitous;

▶ Quantized phase retrieval is not theoretically well understood [DB22];11

▶ Is quantized phase retrieval similar to quantized compressed sensing in
some sense?

▶ New contributions to the well-developed area of quantized compressed
sensing.

11Phase Retrieval by Binary Questions: Which Complementary Subspace is Closer?
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1-Bit Phase Retrieval

Our problem setup:

▶ We deal with 1-bit phase retrieval

▶ sign(|a⊤
i x|) = 1 −→ no information!

▶ We use positive quantization threshold τ > 0 and observe

y = sign(|Ax| − τ) (6)

▶ We assume A ∼ Nm×n(0, 1) and for some β ≥ α > 0:

x ∈ Aβ
α := {u ∈ Rn : α ≤ ∥u∥2 ≤ β} (7)

▶ We study two cases:

▶ 1-bit phase retrieval (1bPR): x is unstructured

▶ 1-bit sparse phase retrival (1bSPR): x is k-sparse
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Overview of this Talk

This talk demonstrates that:

Major findings in 1bCS theory, including hyperplane tessellation, optimal

rates and efficient algorithms, can also be established in phase retrieval

In other words,

In some sense, phase information is inessential for 1bCS

Model y x opti. rate opti. alg sample

1bCS y = sign(Ax) Σn
k ∩ Sn−1 Θ̃( k

m
) Õ(k)

D1bCS y = sign(Ax+ τ ) Σn
k ∩ Bn

2 Θ̃( k
m
) Õ(k)

1bPR y = sign(|Ax| − τ) A
1
1/2 Θ̃( n

m
) Õ(n)

1bSPR y = sign(|Ax| − τ) Σn
k ∩A1

1/2 Θ̃( k
m
) Õ(k2)
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Ideal Program & Tessellation

▶ The best program is to minimize hamming distance loss over signal set:

x̂hdm = arg min
u∈Aβα(∩Σn

k
)

1

m

m∑
i=1

1

(
sign(|a⊤

i u| − τ) ̸= yi

)
(8)

▶ In the noiseless case with yi = sign(|a⊤
i x| − τ), (8) returns estimates

having same measurements as x: sign(|Ax̂hdm| − τ) = sign(|Ax| − τ)

▶ Hai,τ := {u ∈ Rn : a⊤
i u = τ} −→

H|ai|,τ := {u ∈ Rn : |a⊤
i u| = τ} = Hai,τ ∪Hai,−τ

▶ Geometric interpretation:
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Local Tessellation (Local Binary Embedding)

▶ Arbitrary signal set: K ⊂ Aβ
α

localize−→ K(r) := (K −K) ∩ Bn
2 (r)

▶ Gaussian width ω(K) := E supu∈K |⟨g,u⟩| where g ∼ N (0, In)

▶ Covering number N (K, r); metric entropy H (K, r) = logN (K, r)
▶ dist(u,v) = min{∥u− v∥2, ∥u+ v∥2}

Theorem 2.1: Phaseless Gaussian Hyperplane Tessellation

Under Gaussian design and any positive β ≥ α and τ , for small enough r > 0
we let r′ = c1r

log1/2(r−1)
(for some small c1). If

m ≳
ω2(K(3r′/2))

r3
+

logN (K, r′)

r
(9)

then w.p. ≥ 1− exp(−Ω(rm)) we have:

▶ Any u,v ∈ K obeying dist(u,v) ≤ r′

2
satisfy

m−1dH
(
sign(|Au| − τ), sign(|Av| − τ)

)
≤ C2r (10)

▶ Any u,v ∈ K obeying dist(u,v) ≥ 2r satisfy

m−1dH
(
sign(|Au| − τ), sign(|Av| − τ)

)
≥ c3dist(u,v) (11)
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Implications

Information-theoretic recovery guarantees:

▶ If

m ≳
ω2(K(3r′/2))

r3
+

logN (K, r′)
r

, (12)

then

dist(x̂hdm,x) < 2r, ∀x ∈ K (13)

▶ If K ⊂ C for a cone C,

m = Õ

(
ω2((C − C) ∩ Bn

2 ) + logN (K, r′)
r

)
(14)

implies uniform recovery accuracy of 2r.

▶ (1bPR) C = Rn,K = Aβ
α −→ r = Õ( n

m
)

▶ (1bSPR) C = Σn
k ,K = Σn

k ∩Aβ
α −→ r = Õ( k

m
)
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Proof Sketch

▶ Similar results appeared in 1bCS literature [OR15],12 [DM21], built upon a
covering argument along with the well-known probabilistic observation
(∀u,v ∈ Sn−1)

P

(
sign(a⊤

i u) ̸= sign(a⊤
i v)

)
=

arccos(⟨u,v⟩)
π

≍ ∥u− v∥2. (15)

▶ We largely follow their arguments but need a novel relation (∀u,v ∈ Aβ
α)

Pu,v := P
(
sign(|a⊤

i u| − τ) ̸= sign(|a⊤
i v| − τ)

)
≍ dist(u,v) (16)

▶ Actually, to get similar results under sub-Gaussian design, we only need

Pu,v ≳ dist(u,v), (17)

P(||a⊤
i u| − τ | ≤ r) ≲ r, (18)

see the unified framework in [CY24b]13

12Near-optimal bounds for binary embeddings of arbitrary sets
13Optimal quantized compressed sensinig via projected gradient descent
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Lower Bounds

Is the upper bounds Õ( n
m
) and Õ( k

m
) tight? Yes — up to log!

Theorem 2.2: Lower Bounds for 1-Bit (Sparse) PR

For arbitrary known (A, τ) we have the following:

▶ Any estimator x̂ for recovering x ∈ A2
1 from sign(|Ax| − τ) obeys

supx∈A2
1

dist(x̂,x) ≳ n
m

▶ Any estimator x̂ for recovering x ∈ Σn
k ∩A2

1 from sign(|Ax| − τ) obeys

supx∈Σn
k
∩A2

1
dist(x̂,x) ≳ k

m

Counting argument: let Vd be a d-dimensional space in Rn

▶ Number of y: |{sign(|Ax| − τ) : x ∈ Vd}|
≤ |{sign(Ax− τ) : x ∈ Vd}|+ |{sign(Ax+ τ) : x ∈ Vd}|≤ 2( em

d
)d≪ 2m

▶ An ϵ-packing of Vd ∩A2
1 with cardinality greater than ( 2

ϵ
)d

▶ Thus

2
(em

l

)d

≥
(2
ϵ

)d

−→ ϵ ≳
d

m
. (19)
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NBIHT for 1bCS [MM24]

▶ Hinge loss L(u) = 1
2m

∑m
i=1(−yia

⊤
i u+ |a⊤

i u|) with (sub-)gradient

∂L(u) = 1
2m

∑m
1

(
sign(a⊤

i u)− sign(a⊤
i x)

)
ai := h(u,x)

▶ NBIHT: x̃(t+1) = T(k)(x
(t) − η · ∂L(x(t))), x(t+1) = x̃(t+1)/∥x̃(t+1)∥2

▶ Optimization: ∥x(t+1) − x∥2 ≤ 4∥x(t) − x− η · h(x(t),x)∥(Σn,∗
2k

)◦

▶ HD Probability −→ Restricted Approximate Invertibility Condition (RAIC)
[FJPY21],14 [MM24], ∀u,v ∈ Σn,∗

k ,

∥u− v − η · ∂h(u,v)∥(Σn,∗
2k

)◦ ≤ Õ(
k

m
) +

√
Õ(

k

m
)∥u− v∥2 (20)

▶ Optimization: ∥x(t+1) − x∥2 ≤ Õ( k
m
) +

√
Õ( k

m
)∥x(t) − x∥2

−→ fast quadratic convergence taking O(log(log(m/k))) steps

14NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rate
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Our Algorithm

▶ Hamming distance loss: Lhd(u) =
1
m

∑m
i=1 1(sign(|a

⊤
i u| − τ) ̸= yi)

= 1
m

∑m
i=1 1(−yi(|a

⊤
i u| − τ) ≥ 0)

▶ Use the same idea 1(u ≥ 0) −→ max{u, 0} = u+|u|
2

to get (nonconvex)

Hinge loss L(u) = 1
2m

∑m
i=1

[
||a⊤

i u| − τ | − yi(|a⊤
i u| − τ)

]
, with

∂L(u) = 1

2m

m∑
i=1

(
sign(|a⊤

i u| − τ)− sign(|a⊤
i x| − τ)

)
sign(a⊤

i u)ai

h(u,v) :=
1

2m

m∑
i=1

(
sign(|a⊤

i u| − τ)− sign(|a⊤
i v| − τ)

)
sign(a⊤

i u)ai

▶ 1bPR:
▶ Spectral initialization x(0): leading eigenvector of Ŝ = 1

m

∑m
i=1 yiaia

⊤
i

▶ GD: x(t) = x(t−1) − η · ∂L(x(t−1)), t = 1, 2, 3, · · ·

▶ 1bSPR:
▶ Spectral initialization x(0): leading eigenvector of a submatrix of Ŝ
▶ PGD: x(t) = T(k)(x(t−1) − η · ∂L(x(t−1))), t = 1, 2, 3, · · ·
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Optimal Guarantees

Theorem 3.1: GD is Optimal for 1bPR

If m ≳ n, then w.h.p., running GD with spectral initialization and η =
√

πe
2
τ

uniformly recovers all x ∈ Aβ
α to

dist(x(t),x) ≲
n

m
log2

(m

n

)
, ∀t ≳ log

(m

n

)
. (21)

Theorem 3.2: PGD is Optimal for 1bSPR

If m ≳ k2 log(n) log2(m
k
), τ

α
≤ C1,

β
τ

≤ C2, then w.h.p., running PGD with

spectral initialization and η =
√

πe
2
τ recovers a x ∈ Σn

k ∩Aβ
α to

dist(x(t),x) ≲
k

m
log

(mn

k2

)
log

(m

k

)
, ∀t ≳ log

(m

k

)
. (22)

▶ Õ(k2) in sparse case is needed in initialization (a widely existing gap)

▶ Need Õ(k3) to ensure uniform recovery
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Proof: What to Bound

▶ Spectral method −→ ∥x(0) − x∥2 ≤ δ4

▶ Per-iterate analysis:
▶ 1bPR:

∥x(t) − x∥2 = ∥x(t−1) − x− η · ∂L(x(t−1))∥2
= ∥x(t−1) − x− η · h(x(t−1),x)∥2

▶ 1bSPR:

∥x(t) − x∥2 ≤ 2∥T(2k)(x(t−1) − x− η · ∂L(x(t−1)))∥2

= 2
∥∥T(2k)(x(t−1) − x− η · h(x(t−1),x))

∥∥
2

▶ For cone C with C− = C − C, we want to bound

∥PC−(u− v − η · h(u,v))∥2, ∀u,v ∈ Cα,β := C ∩Aβ
α,



20/45

Proof: Phaseless Local AIC

Definition 3.1: Phaseless Local AIC (PLL-AIC)

Given β1 ≥ α1 > 0 and τ > 0, A = [a⊤
1 , · · · ,a⊤

m]⊤ ∈ Rm×n, a cone C,
a step size η, and certain non-negative scalars δ = (δ1, δ2, δ3, δ4)⊤, we say
(A, τ, C, η) respects (α1, β1, δ)-PLL-AIC if

∥PC− (u− v − η · h(u,v))∥2 ≤ δ1∥u− v∥2 +
√

δ2 · ∥u− v∥2 + δ3,

∀u,v ∈ Cα1,β1
obeying ∥u− v∥2 ≤ δ4,

where h(u,v) denotes the subgradient at u when v is underlying signal:

h(u,v) = 1
2m

∑m
i=1

(
sign(|a⊤

i u| − τ)− sign(|a⊤
i v| − τ)

)
sign(a⊤

i u)ai

▶ The linear term ‘δ1∥u− v∥’ is necessary if x ∈ Aβ
α with β > α

▶ Local: ∥u− v∥2 ≤ δ4 ←− spectral method;

▶ Meaning: ∥PC−(u− v − ηh(u,v))∥2 = ∥u− v − ηh(u,v)∥(C−∩Sn−1)◦

▶ Phaseless: it holds for v ⇐⇒ it holds for −v
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Proof: PLL-AIC −→ Convergence

Why is AIC useful? Prove δ2, δ3 = Õ(optimal rate), δ1 ≈ F (η), δ4 ≈ 1√
log ∗

▶ ∥x(0) − x∥2 ≤ δ4 ensured by spectral method

▶ 1bPR (C = Rn): if ∥x(t−1) − x∥ ≫ Õ(n/m)

∥x(t) − x∥2
raic

≤ δ1∥x(t−1) − x∥2 +
√

Õ(n/m)∥x(t−1) − x∥2 + Õ(n/m)

≤ (δ1 + ϵ1)∥x(t−1) − x∥2 ≤ (1− ϵ2)∥x(t−1) − x∥2

▶ 1bSPR (C = Σn
k ): if ∥x(t−1) − x∥2 ≫ Õ(k/m)

∥x(t) − x∥2
raic

≤ 2δ1∥x(t−1) − x∥2 +
√

Õ(k/m)∥x(t−1) − x∥2 + Õ(k/m)

≤ (2δ1 + ϵ1)∥x(t−1) − x∥2 ≤ (1− ϵ2)∥x(t−1) − x∥2

▶ We obtain (at least) linear convergence to optimal error rates



22/45

Proof: Gaussian A Respects RAIC

Theorem 3.3: Gaussian A Respects PLL-AIC

Suppose A ∼ Nm×n(0, 1), β ≥ α > 0, τ > 0, C is a cone. For some constants
ci’s and Ci’s depending on (α, β, τ), if r ∈ (0, c1),

m ≥
C2[H (Cα,β , r) + ω2(C(1))]

r
, (23)

then with probability at least 1 − exp(−c3H (Cα,β , r)), (A, τ, C, η) respects
(α, β, δ)-PLL-AIC with

δ1 = sup
a2+b2∈[α2,β2]

√
|1− ηgη(a, b)|2 + |ηhη(a, b)|2 + c3 log

−1/8(r−1)

δ2 = C4r, δ3 = C5r log(r
−1), δ4 =

c5

log1/2(r−1)

where gη(a, b) =
√

2
π
exp

(
− τ2

2(a2+b2)

)
τ2a2+b2(a2+b2)

(a2+b2)5/2
and hη(a, b) =√

2
π
exp

(
− τ2

2(a2+b2)

)
ab(a2+b2−τ2)

(a2+b2)5/2
.
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Proof: Covering Framework

The goal is to bound ∥PC−(u− v− η · h(u,v))∥2 for all u,v ∈ Cα1,β1 obeying
∥u− v∥2 ≤ δ4. We use a covering argument:

▶ Let Nr be a minimal r-net of Cα,β

▶ u1,v1 ∈ Nr closest to u,v, respectively, ∥u− u1∥2, ∥v − v1∥2 ≤ r

▶ ∥PC−(u− v − ηh(u,v))∥2 ≤ 2r + ∥PC−(u1 − v1 − ηh(u,v))∥2
▶ Large-distance regime (∥u1 − v1∥2 ≥ r):

∥PC−(u1 − v1 − ηh(u,v))∥2 (24)

≤ ∥PC−(u1 − v1 − ηh(u1,v1))∥2︸ ︷︷ ︸
discrete AIC

+η ∥PC−(h(u,v)− h(u1,v1))∥2︸ ︷︷ ︸
gradient mismatch

▶ Small-distance regime (∥u1 − v1∥2 < r):

∥PC−(u1 − v1 − ηh(u,v))∥2 ≤ r + η · ∥PC−(h(u,v))∥2︸ ︷︷ ︸
gradient

(25)
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Proof: Simplify the Gradient

h(u,v) =
1

2m

m∑
i=1

(
sign(|a⊤

i u| − τ)− sign(|a⊤
i v| − τ)

)
sign(a⊤

i u)ai

▶ Introduce two index sets

Rp,q =
{
i ∈ [m] : sign(|a⊤

i p| − τ) ̸= sign(|a⊤
i q| − τ)

}
(26)

Lp,q =
{
i ∈ [m] : sign(a⊤

i p) ̸= sign(a⊤
i q)

}
(27)

▶ Then we find h(p,q) = h1(p,q) + h2(p,q) where

h1(p,q) =
1

m

∑
i∈Rp,q

sign(a⊤
i (p− q))ai, (28)

h2(p,q) =
1

m

∑
i∈Rp,q∩Lp,q

[
sign(a⊤

i (p+ q))− sign(a⊤
i (p− q))

]
ai (29)

▶ h1(p,q) is the main term and close to 1bCS gradient
1
m

∑
i∈Lp,q

sign(a⊤
i (p− q))ai

▶ h2(p,q) is a negligible higher-order term
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Proof: Large-distance Regime

From (24), we need to bound
▶ ∥PC−(u1 − v1 − ηh(u1,v1))∥2 uniformly over

N (2)
r,δ4

:= {(p,q) ∈ Nr ×Nr : ∥p− q∥2 ∈ [r, 2δ4]}, and by h = h1 + h2

we only need to bound

Term1: ∥PC− (u1 − v1 − ηh1(u1,v1))∥2, (u1,v1) ∈ N (2)
r,δ4

Term2: η∥PC− (h2(u1,v1))∥2, (u1,v1) ∈ N (2)
r,δ4

▶ Term3: η∥PC−(h(u,v)− h(u1,v1))∥2
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Proof: Small-distance Regime

From (25) we need to bound

▶ Term4: η∥PC−(h(u,v))∥2 uniformly over all u,v ∈ Cα,β obeying
∥u− v∥2 ≤ 3r.



27/45

Proof: Bounding Term 1

Bound ∥PC−(p− q− ηh1(p,q))∥2 for all (p,q) ∈ N (2)
r,δ4

:

▶ |N (2)
r,δ4
| ≤ |Nr|2 = [N (Cα,β , r)]

2

▶ Only need to bound it for fixed (p,q) — followed by union bound

Orthogonal decomposition:

▶ Useful parameterization: we can find orthonormal β1 = u−v
∥u−v∥2

and β2

such that
p = u1β1 + u2β2, q = v1β1 + u2β2

for some u1, u2, v1 obeying u1 > v1 and u2 ≥ 0. Then we have

h1(p,q) = ⟨h1(p,q),β1⟩β1 + ⟨h1(p,q),β2⟩β2

+
{
h1(p,q)− ⟨h1(p,q),β1⟩β1 − ⟨h1(p,q),β2⟩β2

}︸ ︷︷ ︸
:=h⊥

1 (p,q)

.

▶ ⟨h1(p,q),β1⟩β1 is the main term to cancel out p− q

▶ We need to control the effect of ⟨h1(p,q),β2⟩β2 and h⊥
1 (p,q)
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Proof: Bounding Term 1

∥PC− (p− q− η · h1(p,q))∥2

≤
∥∥p− q− η · ⟨h1(p,q),β1⟩β1 − η · ⟨h1(p,q),β2⟩β2

∥∥
2
+ η · ∥PC− (h⊥

1 (p,q))∥2

≤
(∣∣∣∥p− q∥2 − η ·

〈
h1(p,q),

p− q

∥p− q∥2

〉∣∣∣2 + η2 ·
∣∣⟨h1(p,q),β2⟩

∣∣2)1/2

+ η ·
∥∥PC− (h⊥

1 (p,q))
∥∥
2

(30)

:= ((Tp,q
1 )2 + η2 · |Tp,q

2 |2)1/2 + η · Tp,q
3 ,

where

Tp,q
1 :=

∣∣∣∣∥p− q∥2 − η ·
〈
h1(p,q),

p− q

∥p− q∥2

〉∣∣∣∣ , (31)

Tp,q
2 := ⟨h1(p,q),β2⟩, Tp,q

3 := ∥PC−(h⊥
1 (p,q))∥2 (32)

▶ Need to separately bound Tp,q
1 , Tp,q

2 , Tp,q
3
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Proof: Bounding Term 1 (Example: Bound Tp,q
1 )

The ideas in bounding Tp,q
i , i = 1, 2, 3 are similar. Use Tp,q

1 as an example:

T
p,q
1 =

∣∣∣∥p − q∥2 −
η

m

∑
i∈Rp,q

|a⊤
i β1|

∣∣∣
≤ η

∣∣∣ 1

m

∑
i∈Rp,q

|a⊤
i β1| −E

[
1(i ∈ Rp,q)|a⊤

i β1|
]∣∣∣

︸ ︷︷ ︸
Concentration term

+
∣∣∣∥p − q∥2 − ηE

[
1(i ∈ Rp,q)|a⊤

i β1|
]∣∣∣︸ ︷︷ ︸

Deviation

▶ Careful calculation shows: Deviation = ∥p− q∥2(1− ηf(p,q) + o(1))
▶ Conditioning on Rp,q with cardinality rp,q, we have

1

m

∑
i∈Rp,q

|a⊤
i β1| ∼

1

m

rp,q∑
i=1

Z
p,q
i (33)

where we let a1, a2
iid∼ N (0, 1)

Z
p,q
i

iid∼ |a⊤
i β1|

∣∣{sign(|a⊤
i p| − τ) ̸= sign(|a⊤

i q| − τ)
}

∼ |a⊤
i β1|

∣∣{sign(|u1a
⊤
i β1 + u2a

⊤
i β2| − τ) ̸= sign(|v1a⊤

i β1 + u2a
⊤
i β2| − τ)

}
∼ |a1|

∣∣{sign(|u1a1 + u2a2| − τ) ̸= sign(|v1a1 + u2a2| − τ)}
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Proof: Bounding Term 1 (Example: Bound Tp,q
1 )

▶ Show that Zp,q
i are sub-Gaussian:

▶ Write down the P.D.F. of Zp,q
i ;

▶ Show the tail of P.D.F. is bounded by some Gaussian tail (tedious!);

▶ This shows conditional concentration: conditioning on {|Rp,q| = rp,q},
with prob. ≥ 1− 2 exp(−4 logH (Cα,β , r)),

concentration term ≤
|rp,q −mPp,q|+

√
rp,qH (Cα,β , r)

m

▶ Remains to analyze |Rp,q| ∼ Bin(m,Pp,q). By Chernoff bound, with
prob. ≥ 1− 2 exp(−4 logH (Cα,β , r)),∣∣|Rp,q| −mPp,q

∣∣ ≤√
12mPp,qH (Cα,β , r)

▶ Final bound: Concentration term ≲
√

∥p−q∥2H (Cα,β ,r)
m
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Proof: Bounding Terms 2, 3, 4

Term 2: ∥PC− (h2(p,q))∥2, ∀(p,q) ∈ N (2)
r,δ4

Term 3: ∥PC− (h(u,v)− h(u1,v1))∥2, ∥u− u1∥2, ∥v − v1∥2 ≤ r

Term 4: ∥PC− (h(u,v))∥2, ∥u− v∥2 ≤ 3r,

where h(u,v) =
1

2m

∑
i∈Rp,q

(
sign(|a⊤

i u| − τ)− sign(|a⊤
i v| − τ)

)
sign(a⊤

i u)ai

h2(p,q) =
1

m

∑
i∈Rp,q∩Lp,q

[
sign(a⊤

i (p+ q))− sign(a⊤
i (p− q))

]
ai

▶ Idea: If the number of contributors is small enough, then we can get tight
enough bound −→ we shall look at the number of summands

▶ Challenge: Terms 3, 4 involve infinitely many points u and v

▶ Remedy: local binary embedding! [OR15], [DM21]; see also (10)
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Proof: Bounding Terms 2, 3, 4

Lemma 3.1: Uniform Bound on Partial Sum of Squares (e.g., [DM21])

Let a1, ..., am be independent random vectors in Rn satisfying E(aia
⊤
i ) = In and

maxi ∥ai∥ψ2
≤ L. For some given given W ⊂ R

n and 1 ≤ ℓ ≤ m, there exist
constants C1, c2 depending only on L such that the event

sup
x∈W

max
I⊂[m]
|I|≤ℓ

( 1

ℓ

∑
i∈I

|⟨ai,x⟩|2
)1/2

≤ C1

(ω(W)
√
ℓ

+ rad(W)

√
log

( em

ℓ

))
holds with probability at least 1 − 2 exp(−c2ℓ log(

em
ℓ )).

By the above Lemma, it suffices to show the number of summands in Terms
2,3,4 are fewer than Õ(mr), for instance:

∥PC− (h2(p,q))∥2 = sup
w∈C−∩Bn2

⟨w,h2(p,q)⟩

= sup
w∈C−∩Bn2

1

m

∑
i∈Rp,q∩Lp,q

[
sign(a⊤

i (p+ q))− sign(a⊤
i (p− q))

]
a⊤
i w

≤ sup
w∈C−∩Bn2

max
S⊂[m]

|S|=Õ(mr)

2|a⊤
i w|
m

▶ number of summands is uniformly small

= Õ(r) ▶ By Lemma 3.1
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Number of Summands in Term 2: ∥PC−(h2(p,q))∥2, (p,q) ∈ N (2)
r,δ4

▶ Control |Rp,q ∩ Lp,q| over N (2)
r,δ4

▶ |Rp,q ∩ Lp,q| ∼ Bin(m,P
(2)
p,q), where

P
(2)
p,q := P(i ∈ Rp,q ∩ Lp,q) = P

(
sign(|a⊤

i p| − τ) ̸= sign(|a⊤
i q| − τ)

sign(a⊤
i p) ̸= sign(a⊤

i q)

)
▶ P

(2)
p,q ≤ 4 exp(− τ2

2∥p−q∥22
), in stark contrast to:

▶ Pp,q = P(sign(|a⊤
i p| − τ) ̸= sign(|a⊤

i q| − τ)) ≍ dist(p,q) = ∥p− q∥2
▶ P(i ∈ Lp,q) = P(sign(a⊤

i p) ̸= sign(a⊤
i q)) ≍ ∥p− q∥2

▶ P
(2)
p,q ≪ Pp,q as ∥p− q∥2 ≤ δ4 ≍ 1

log1/2(r−1)
= o(1)

−→ |Rp,q ∩ Lp,q| ≲ mr

log1/2(r−1)
, ∀(p,q) ∈ N (2)

r,δ4

ai ∈ Lp1,q1 , ai /∈ Rp1,q1

ai /∈ Lp2,q2 , ai ∈ Rp2,q2

ai ∈ Lp3,q3 , ai ∈ Rp3,q3

Double separation is much more

stringent for small ∥p− q∥2
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Number of Summands in Terms 3, 4

▶ Recall that Term 3 is

∥PC−(h(u,v)− h(u1,v1))∥2, (∥u− u1∥2, ∥v − v1∥2 ≤ r)

Term 4 is

∥PC−(h(u,v))∥2, (∥u− v∥2 ≤ 3r)

▶ How can we bound number of separations over infinite set?
−→ Local binary embedding! [OR15], [DM21]

Theorem 3.4: Local Binary Embedding

For small enough r > 0 and r′ = c1r

log1/2(r−1)
for some small c1. If m ≳

ω2(K(3r′/2))

r3
+

log N (K,r′)
r

, then with prob. ≥ 1− exp(−Ω(rm)) we have:

▶ (1bPR embeding; This work) Any u,v ∈ K ⊂ A
β
α obeying

dist(u,v) ≤ r′

2
satisfy |Ru,v| ≲ mr

▶ (1bCS embeding; [OR15]) Any u,v ∈ K ⊂ Sn−1 obeying ∥u− v∥2 ≤ r′

satisfy |Lu,v| ≲ mr
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Number of Summands in Terms 3, 4

▶ It directly works out for Term 4:

▶ No more than |Rp,q| summands; ∥u− v∥2 ≤ 3r

▶ Issue with Term 3 — ∥PC−(h(u,v)− h(u1,v1))∥2:
▶ No more than |Ru,v|+ |Ru1,v1 | summands

▶ However, we do not have tight enough bound on |Ru,v| and |Ru1,v1 |, as u
and v, and u1 and v1, are not close enough.

▶ More precisely, ∥u− v∥2 and ∥u1 − v1∥2 are not on a scale of Õ(r)

Large-distance regime: ∥u1 − v1∥2 ≥ r
∥u− v∥2 ≤ δ4, most likely ∥u− v∥2 ≫ r

so most likely, ∥u1 − v1∥2 ≫ r
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Number of Summands in Terms 3, 4

▶ We need a rearrangement of h(u,v)− h(u1,v1) to get tighter bound

h(u1,v1)− h(u,v)

=
1

2m

m∑
i=1

[
sign(|a⊤

i v| − τ)− sign(|a⊤
i v1| − τ)

]
sign(a⊤

i u1)ai

+
1

2m

m∑
i=1

[
sign(|a⊤

i u1| − τ)− sign(|a⊤
i u| − τ)

]
sign(a⊤

i u1)ai

+
1

2m

m∑
i=1

[
sign(a⊤

i u)− sign(a⊤
i u1)

][
sign(|a⊤

i v| − τ)− sign(|a⊤
i u| − τ)

]
ai,

▶ No more than |Rv,v1 |+ |Ru,u1 |+ |Lu,u1 | summands

▶ ∥u− u1∥2, ∥v − v1∥2 ≤ r −→ no more than Õ(mr) summands
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Synthetic Data

We test the case of ∥x∥2 = 1 :

5 5.5 6 6.5 7 7.5 8
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6.8 7 7.2 7.4 7.6 7.8 8

-5.6

-5.4

-5.2
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-4.6

-4.4

-4.2

-4

Figure: Phases are non-essential in solving 1-bit linear system (Left; x ∈ S29) and in

1-bit compressed sensing (Right; x ∈ Σ500,∗
3 ).
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Synthetic Data

We test the case of x ∈ Aβ
α (β ≥ α):

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

6.8 7 7.2 7.4 7.6 7.8 8 8.2

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Figure: Full Signal Reconstruction over Aα,β in 1-bit phase retrieval (Left; x ∈ R30)

and 1-bit sparse phase retrieval (Right; x ∈ Σ500
3 ).
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Real Images

(a) Original image: Milky Way Galaxy.

(b) Recovered image after SI-1bPR (L = 64): relative error = 0.270, PSNR = 25.14.

(c) Recovered image after GD-1bPR (L = 64): relative error = 0.029, PSNR = 44.65.

Figure: Recovering the 1080× 1980× 3 Milky Way Galaxy image from phaseless bits
produced by CDP with L = 64 random patterns.
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Random Initialization
Question:

For 1bPR, can gradient descent start from random initialization?

Literature (phase retrieval):
▶ Optimization landscape (no polynomial time algorithm): [SQW18]15

▶ No sample splitting: [CCFM19]16

▶ Sample splitting with sharp rate [CPD23]17

▶ Stochastic GD: [TV23]18

0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

Simulations: m = 10n

Start with a snower convergence

[CCFM19]

15A geometric analysis of phase retrieval
16Gradient descent with random initialization: Fast global convergence for nonconvex phase

retrieval
17Sharp global convergence guarantees for iterative nonconvex optimization with random data
18Online stochastic gradient descent with arbitrary initialization solves non-smooth, non-convex

phase retrieval
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Other Questions

▶ Can we extend to complex case y = sign(|Φx| − τ) where Φ ∈ Cm×n and
x ∈ Cn?
▶ Randomized Kaczmarz;
▶ Random initialization;

▶ Can we go beyond Gaussian design?
▶ Sub-Gaussian matrix [KL17];19

▶ Structured sensing matrix;

▶ Can we extend the results to multi-bit?
▶ This relies on dithering in compressed sensing [XJ20].20

▶ Can we precisely compare the errors in 1-bit sensing and 1-bit phase
retrieval?
▶ Precise bounds are lacking in nonlinear structured problems;
▶ See [CPD23] for unstrctured case with sample splitting.

▶ Can we develop some practical applications?

Thank You
19Phase retrieval without small-ball probability assumptions
20Quantized compressive sensing with rip matrices: The benefit of dithering
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