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(Linear) Compressed Sensing

• Goal: recover structured x ∈Rn from A ∈Rm×n and y = Ax

• A = [a1, · · · ,am]>, then we observe yi = a>i x, i = 1, · · · ,m

• Result: k-sparse x can be exactly recovered from O(k log( en
k )) Gaussian measurements

via constrained ℓ1-norm minimization

x̂bp = argmin ‖u‖1, s.t. Au = y (1)
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Nonlinear Compressed Sensing

• Goal: recover structured x ∈Rn from A ∈Rm×n from yi = fi(a>i x), i = 1, · · · ,m

• Result: Under Gaussian matrix and fairly mild condition on {fi}m
i=1, we can ignore the

nonlinearity and use G-Lasso

x̂GLasso = argmin
1

2m
‖y−Au‖2

2 +λ‖u‖1 (2)

to recover k-sparse x to ℓ2 error [PV16]1

‖x̂GLasso −x‖2 = Õ
(√ k

m

)

• In general, we cannot do better without knowing fi !
Just think of noisy linear regression y = Ax+ϵ with ϵ∼N (0,σ2Im)

1The generalized lasso with non-linear observations. Y. Plan & R. Vershynin, 2016, TIT.
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Quantizer

• An L-level quantizer Q which quantizes q ∈R to

Q(q) =



q1, if q < b1

q2, if b1 ≤ q < b2

· · ·
qL−1, if bL−2 ≤ q < bL−1

qL, if q ≥ bL−1

(3)

• for some quantization thresholds b1 < b2 < ·· · < bL−1

• and some quantized values q1 < q2 < ·· · < qL.

• Resolution: If L ≥ 3, we define

∆ := min
j=1,··· ,L−2

|bj+1 −bj |; (4)

If L = 2, we define ∆ := 2 (just a convention).
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Quantizer

The values (qi)L−1
i=1 are not important, so we could assume

qi+1 = qi +∆, i = 1,2, · · · ,L−1. (5)
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Quantized Compressed Sensing

An important instance of nonlinear CS:

• Goal of Quantized CS: recover structured signal x ∈Rn from

y = Q(Ax−τ) =



Q(a>1 x−τ1)

Q(a>2 x−τ2)

...

Q(a>mx−τm)


• A ∈Rm×n: we focus on sub-Gaussian matrix

• τ ∈Rm: dithering noise helps reconstruction [JR72]2

• we focus on τ∼U [−Λ,Λ]m independent of A

• Λ= 0 reduces to the non-dithered case

2The application of dither to the quantization of speech signals. N. Jayant, L. Rabiner, 1972.
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Signal Structure

• x ∈K for star-shaped set K (Definition: ∀u ∈K , tu ∈K for any t ∈ [0,1])

• Examples:

• k-sparse signals Σn
k
= {u ∈Rn : ‖u‖0 ≤ k};

• low-rank matrices M
n1,n2
r̄ = {M ∈Rn1×n2 : rank(M) ≤ r̄};

• effectively sparse signals
p

kBn
1 = {u ∈Rn : ‖u‖1 ≤p

k}.
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Signal Norm

• x ∈Aβ
α = {u ∈Rn : α≤ ‖u‖2 ≤β}.

Signal space: Taken collectively, we consider the recovery of the signals in

X :=K ∩Aβ
α (6)

CCOM & MINDS @ UCSD Efficient and Optimal Quantized Compressed Sensing April 8, 2025 10 / 69



Quantized CS HDM PGD and RAIC Prove RAIC Conclusions

One-Bit Compressed Sensing (1bCS)

Problem setup

• Recover x from y = sign(Ax) = (sign(a>1 x), · · · , sign(a>mx))>, with A ∼N m×n(0,1)

• x ∈K ∩Sn−1 −→ we cannot distinguish x and 2x

Optimal rate

• Hamming distance dH (u,v) =∑m
i=1 1(ui 6= vi)

• Hamming distance minimization (HDM):

x̂hdm = arg min
u∈K ∩Sn−1

dH
(
sign(Au),y

)
(7)

• K =Σn
k : ‖x̂hdm −x‖2 = Õ( k

m ) [JLBB13]3 (Optimal rate)

• This is sharper than Θ(
p

k/m) for noisy regression

• K =p
kBn

1 : ‖x̂hdm −x‖2 = Õ
(
( k

m )1/3)
[OR15]4 (Fastest rate)

3Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors. L. Jacques, J. Laska, P. T. Boufounos; R. Baraniuk, 13 TIT.
4Near-optimal bounds for binary embeddings of arbitrary sets. S. Oymak & B. Recht, Arxiv, 2015.
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Hyperplane Tessellation - 1bCS

1bCS ⇐⇒ hyperplane tessellation of a subset of Sn−1 [PV14]5

5Dimension reduction by random hyperplane tessellations, Y. Plan & R. Vershynin, 2014 Discrete & Computational Geometry
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Geometry of 1bCS - Gaussian Hyperplane Tessellation

Go beyond Gaussian design? [ALPV14];6

{−1,1}-valued A (e.g., Bernoulli design) does not work:

6One-bit compressed sensing with non-Gaussian measurements, A. Ai, A. Lapanowski, Y. Plan, R. Vershynin, Linear Algebra and its Applications,
2014.

CCOM & MINDS @ UCSD Efficient and Optimal Quantized Compressed Sensing April 8, 2025 13 / 69



Quantized CS HDM PGD and RAIC Prove RAIC Conclusions

Efficient Algorithms for 1bCS

algorithm error rate signal space uniformity

Linear Program [PV13]7 Õ
(
( k

m )1/5) p
kBn

1 ∩Sn−1 3

Convex Relaxation [PV12]8 Õ
(
( k

m )1/4) p
kBn

1 ∩Sn−1 7

Generalized Lasso [PV16] Õ
(
( k

m )1/2)
Σn

k ∩Sn−1 7

PBP [PVY17]9 Õ
(
( k

m )1/2)
Σn

k ∩Sn−1 7

Adaboost [CKLG22]10 Õ
(
( k

m )1/3) p
kBn

1 ∩Sn−1 3

NBIHT [MM24]11 Õ
( k

m

)
Σn

k ∩Sn−1 3

PGD (our work) Õ
( r̄(n1+n2)

m

)
Mn1 ,n2

r̄ ∩ {‖U‖F = 1} 3

PGD (our work) Õ
(
( k

m )1/3) p
kBn

1 ∩Sn−1 3

7One-bit compressed sensing by linear programming, Y. Plan & R. Vershynin, CPAM, 2013.
8Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, Y. Plan & R. Vershynin, 12 TIT.
9High-dimensional estimation with geometric constraints, Y. Plan, R. Vershynin & E. Yudovina, 17 inf. inference.

10Adaboost and robust one-bit compressed sensing, G. Chinot, F. Kuchelmeister, M. Löffler, S. Geer, 22 MSL.
11Binary iterative hard thresholding converges with optimal number of measurements for 1-bit compressed sensing, N. Matsumoto & A.

Mazumdar, 24 JACM
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Dithered One-Bit Compressed Sensing (D1bCS)

Downsides of 1bCS

• hard to go beyond Gaussian design;

• unable to recover signal norm (see a fix by Gaussian dither [KSW16]12)

D1bCS Problem Setup

• using uniform dither τ∼U [−λ,λ]m addresses both issues [DM21],13 [TR20]14

• Model: recover x ∈K ∩Bn
2 from

y = sign(Ax−τ)

under sub-Gaussian A

12One-bit compressive sensing with norm estimation, K. Knudson, R. Saab, R. Ward, 16 TIT.

13Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing, S. Dirksen & S. Mendelson, 2021 JEMS

14The generalized lasso for sub-gaussian measurements with dithered quantization, C. Thrampoulidis & A. S. Rawat, 20 TIT.
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Geometric of D1bCS - Non-Gaussian Hyperplane Tessellation

• Theorem 1.9 in [DM21]: HDM

x̂hdm = arg min
u∈K ∩Bn

2

dH
(
sign(Au−τ),y

)
(8)

achieves the optimal rate Õ( k
m ) if K =Σn

k , and the fastest rate Õ
(
( k

m )1/3)
if K =p

kBn
1
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Efficient Algorithms for D1bCS

algorithm error rate signal space uniformity

Convex Relaxation [DM21] Õ
(
( k

m )1/4) p
kBn

1 ∩Bn
2 3

Con. Rel. (one-sided ℓ1) [JMPS21]15 Õ
(
( k

m )1/3) p
kBn

1 ∩Bn
2 3

Generalized Lasso [TR20] Õ
(
( k

m )1/2)
Σn

k ∩Bn
2 7

PGD (our work) Õ
( k

m

)
Σn

k ∩Bn
2 3

PGD (our work) Õ
(
( k

m )1/3) p
kBn

1 ∩Bn
2 3

15Quantized Compressed Sensing by Rectified Linear Units, H. C. Jung, J. Maly, L. Palzer, A. Stollenwerk, 21 TIT.
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Dithered Multi-Bit Compressed Sensing (DMbCS)

• Another benefit of dithering: generalization to multi-bit sensing

• We consider the uniform quantizer

Qδ(a) = δ
(⌊ a

δ

⌋
+ 1

2

)
=



· · ·

− 3δ
2 , if a ∈ (−2δ,−δ)

− δ
2 , if a ∈ (−δ,0)

δ
2 , if a ∈ (0,δ)

3δ
2 , if a ∈ (δ,2δ)

· · ·

. (9)

• QCS with Dithered Uniform Quantizer: Under τ∼U ([− δ
2 , δ2 ]m) and sub-Gaussian A,

we can accurately recover structured signals x ∈K ∩Bn
2 from [TR20], [XJ20]16

y = Qδ(Ax−τ). (10)

16Quantized compressive sensing with rip matrices: The benefit of dithering, C. Xu & L. Jacques, 2020 Inf. inference.
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Dithered Multi-Bit Compressed Sensing (DMbCS)

• Qδ does not immediately sample finite bits

• For some even integer L ≥ 4, we consider Qδ with saturation when {a ∈R : |a| ≥ Lδ
2 }:

Qδ,L(a) = Qδ(a) ·1
(
|a| < Lδ

2

)
+ (L−1)δ

2
1

(
a ≥ Lδ

2

)
+ (1−L)δ

2
1

(
a ≤ −Lδ

2

)
(11)

• DMbCS: recover x ∈K ∩Bn
2 from y = Qδ,L(Ax−τ)

• K =Σn
k : optimal rate Ω( k

mL ) [BJKS15]17

• K =p
kBn

1 : the fastest rate Õ(( k
mL )1/3) [JMPS21]

• Additional challenge - nail down the role of quantization level L

17Quantization and Compressive Sensing, P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, 2015.
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Qδ & Qδ,L with Saturation

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 1: The uniform quantizer Qδ and its saturated versions Qδ,4 and Qδ,6 under δ= 1.
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Geometric of DMbCS - Parallel Non-Gaussian Hyperplanes

L = 4
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Efficient Algorithms for DMbCS

algorithm error rate signal space uniformity

Con. Rel. (one-sided ℓ1) [JMPS21] Õ
(
( k

mL )1/3) p
kBn

1 ∩Bn
2 3,Qδ,L

Generalized Lasso [TR20] Õ
( 1

L ( k
m )1/2)

Σn
k
∩Bn

2 7,Qδ

PBP [XJ20] Õ
(
(1+δ)( k

m )1/2)
Σn

k
∩Bn

2 3,Qδ

PGD (our work) Õ
( k

mL
)

Σn
k
∩Bn

2 3,Qδ,L

PGD (our work) Õ
(
( k

mL )1/3) p
kBn

1 ∩Bn
2 3,Qδ,L
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Complexity of Arbitrary Set

How to capture complexity of an arbitrary set?

ω(U ) =Eg∼N (0,In) supu∈U 〈g,u〉: Gaussian width

N (U ,r): covering number at scale r

logN (U ,r): metric entropy at scale r

Examples:

• ω(Bn
2 ) ³p

n and logN (Bn
2 ,r) ≤ n log( C

r )

• ω(Σn
k ∩Bn

2 ) ³
√

k log( en
k ) and logN (Σn

k ∩Bn
2 ,r)≲ k log( en

rk )

• ω(
p

kBn
1 ∩Bn

2 ) ³
√

k log( en
k ) and logN (

p
kBn

1 ∩Bn
2 ,r)≲ k

r2 log( en
rk )
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Separation

Separation Probability:

Pu,v :=P
(
Q(a>i u−τi) 6= Q(a>i v−τi)

)
Separation Set:

Ru,v =
{

i ∈ [m] : Q(a>i u−τi) 6= Q(a>i v−τi)
}

Separation Event:

E(i)
u,v := {i ∈ Ru,v}
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Our Result - HDM Bound

HDM Bound: Under

• sub-Gaussian A,

• a small-ball probability,

• a separation probability estimate,

(Informal) Theorem 1: Performance bound for the infeasible program - HDM

For small r > 0 and r′ ³ r
log1/2(r−1)

, if

m ≥ C2(∆∨Λ)

(
ω2(K(r′))

r3
+ logN (X ,r′)

r

)
(12)

then ‖x̂hdm −x‖2 ≤ 2r.

• K(ϕ) := (K −K )∩ϕBn
2
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Our Main Result - PGD Bound

PGD Bound: Under

• sub-Gaussian A,

• small-ball probability,

• separation probability estimate,

• and additionally a number of moment bounds (that convey a weak type of
independence between the sensing vector marginals and the separation event),

(Informal) Theorem 2: Performance bound for the efficient algorithm PGD

For small r > 0, if

m ≥ C2(∆∨Λ)

(
ω2(K(r))

r3
+ logN (X ,r/2)

r

)
(13)

then ‖x̂pgd −x‖2 = Õ(r).

Takeaway: Under some assumptions, PGD achieves the same rates as HDM.
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Hamming Distance Minimization

QCS — General context

• recover structured signals x ∈X =K ∩Aβ
α from y = Q(Ax−τ) under sub-Gaussian

A ∈Rm×n and τ∼U [−Λ,Λ]m

• Q: L-level quantizer with resolution ∆

Hamming distance minimization (HDM)

• HDM:

x̂hdm = arg min
u∈X

dH
(
Q(Au−τ),y

)
, (14)

• This is the best possible program in the noiseless case
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Hyperplane Tessellation
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Assumptions 1 - Sub-Gaussian Design

• We first unify the HDM performance bounds for specific models—[JLBB13] and [OR15]
for 1bCS; [DM21] for D1bCS—under generic assumptions

Assumption 1: Sub-Gaussian Design

The sensing vectors a1 ,a2 , · · · ,am are i.i.d. isotropic sub-Gaussian, i.e., they satisfyE(aia>i ) = In
and ‖ai‖ψ2 ≤ C0 for some absolute constant C0.
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Assumptions 2, 3 - Small-Ball & Separation Probabilities

Assumption 2: Small-ball probability

For any u ∈Aβ
α,

P

(
min

j∈[L−1]
|a>i u−τi −bj | ≤ t

)
≲ t

∆∨Λ
, ∀t > 0.

Assumption 3: Separation probability

For any u,v ∈Aβ
α,

Pu,v ³ min

{ ‖u−v‖2

∆∨Λ
,1

}
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Local Hyperplane Tessellation (Quantized Embedding Property)

Theorem 1: Quantized Embedding Property

Let W be a set contained inA
β
α, for ϵ ∈ (0,c0(∆∨∆)), we let ϵ′ = c1ϵ

log1/2( ∆∨Λϵ )
and suppose

m ≥ C2(∆∨Λ)

(
ω2(W(3ϵ′/2))

ϵ3
+ logN (W ,ϵ′)

ϵ

)
. (15)

• (small to small) Under Assumptions 1–2, with probability at least 1−2exp(− c3mϵ
∆∨Λ ), for

any u,v ∈W

‖u−v‖2 ≤ ϵ′
2

=⇒ dH
(
Q(Au−τ),Q(Av−τ)

)︸ ︷︷ ︸
:=|Ru,v |

≤ C4mϵ

∆∨Λ
.

• (large to large) Under Assumptions 1–3, with probability at least 1−exp(− c5mϵ
∆∨Λ ), for any

u,v ∈W

‖u−v‖2 ≥ 2ϵ =⇒ dH
(
Q(Au−τ),Q(Av−τ)

)≥ c6mmin

{ ‖u−v‖2

∆∨Λ
,1

}
.

dH
(
Q(Ax̂hdm −τ),Q(Ax−τ)

)= 0 =⇒ ‖x̂hdm −x‖2 ≤ 2ϵ
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Takeaway and Computational Problem

Takeaway:

Any sub-Gaussian QCS systems possessing a separation probability proportional to

ℓ2 distance and a small-ball probability achieves optimal sparse recovery rate Õ(k/m)

• Techniques: Similar to [OR15], [DM21]

However, x̂hdm cannot be computed efficiently:

Can we devise an efficient algorithm to achieve error rates of x̂hdm?
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HDM is Intractable

x̂hdm = arg min
u∈X

dH
(
Q(Au−τ),y

)

• The intractability of x̂hdm comes from:

1. the discrete loss dH (Q(Au−τ),y) =∑m
i=1 1

(
Q(a>i u−τi) 6= yi

)
2. the typically nonconvex constraint x ∈K ∩Aβ

α
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One-sided ℓ1 loss

• Construct a (slightly different) hamming distance loss:

• Observing yi = Q(a>i x−τi) amounts to observing L−1 binary measurements

yij = sign(a>i x−τi −bj), j = 1, · · · ,L−1. (16)

• With overall (L−1)m binary measurements, we construct

L (u) : = ∆

m

m∑
i=1

L−1∑
j=1
1

(
sign(a>i u−τi −bj) 6= yi,j

)
(17)

= ∆

m

m∑
i=1

L−1∑
j=1
1

(−yij(a>i u−τi −bj) ≥ 0
)
, (18)
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One-sided ℓ1 loss

• Common idea: to relax 1(a > 0) to the one-sided ℓ1 loss max{a,0} = a+|a|
2

• Then we obtain

L1(u) = ∆

2m

m∑
i=1

L−1∑
j=1

[
|a>i u−τi −bj |−yij(a>i u−τi −bj)

]
.

with (sub-)gradient of L1(u)

∂L1(u) = ∆

2m

m∑
i=1

L−1∑
j=1

(
sign(a>i u−τi −bj)−yij

)
ai=

1

m

m∑
i=1

(
Q(a>i u−τi)−Q(a>i x−τi)

)
ai,

↑ qi+1 = qi +∆
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Nonconvex constraint

• How to deal with the nonconvex constraint?

• minu∈X L (u) is intractable for nonconvex X , it is possible to achieve similar

estimation through PGD: [OS17],18 [S19]19

x(t) =PX

(
x(t−1) −η ·∂L1(x(t−1))

)
, t = 1,2, · · · (19)

• X =K ∩Aβ
α, so PX is not immediately efficient even for convex K

−→ we use sequential projection

P
A
β
α
◦PK

18Fast and reliable parameter estimation from nonlinear observations, S. Oymak, M. Soltanolkotabi, 2017 SIOPT

19Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization, M. Soltanolkotabi,

2019 TIT
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Projected Gradient Descent for QCS

h(u,v) := 1

m

m∑
i=1

(
Q(a>i u−τi)−Q(a>i v−τi)

)
ai (20)

Algorithm 1 Projected Gradient Descent for QCS

1: Input: y = Q(Ax−τ), (A,τ), K ,A
β
α, initialization x(0), step size η

2: For t = 1,2,3, · · · do

x(t) =P
A

β
α

(
PK

(
x(t−1) −η ·h(x(t−1),x)

))
(21)

• Specializing to 1bCS of x ∈Σn
k ∩Sn−1 returns NBIHT [JLBB13], [MM24]:

x(t) = T(k)
(
x(t−1) −η ·∂L1(x(t−1))

)
‖T(k)(x(t−1) −η ·∂L1(x(t−1)))‖2

(22)
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Restricted Approximate Invertibility Condition (RAIC)

• Dual norm: ‖w‖U ◦ = supu∈U 〈u,w〉

Definition 1: RAIC

Under some quantizer Q, for some given D ⊂ Rn and µ = (µ1 ,µ2 ,µ3 ,µ4) with non-negative
scalars (µi)4

i=1, we say (Q,A,τ,K ,η) respects (D,µ)-RAIC at scale ϕ> 0 if

1

ϕ
‖u−v−η ·h(u,v)‖K ◦

(ϕ)
≤µ1‖u−v‖2 +√

µ2 · ‖u−v‖2 +µ3 (23)

holds for any u,v ∈D obeying ‖u−v‖2 ≤µ4.

Similar notions in [FJPY21],20 [MM24]; we provide generalization

20NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rate, M. P. Friedlander, H. Jeong, Y. Plan, Ö. Ylmaz, TIT,
2021.
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Meaning of RAIC

• Meaning: the ideal descent step x(t) −x — in light of

x(t) − (x(t) −x) = x

— is close to the actual step ηh(x(t),x), in the dual norm sense and up to a few error

terms

• Regularity Condition [CLS15]:21 〈∇L (u),u−x〉 ≥ c1‖u−x‖2
2 + c2‖∇L (u)‖2

2

21Phase Retrieval via Wirtinger Flow: Theory and Algorithms, E. Candès, X. Li, M. Soltanolkotabi, TIT, 2015.
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Why RAIC is useful?

Why RAIC?

‖x(t) −x‖2 =
∥∥∥P
A

β
α

(
PK

(
x(t−1) −ηh(x(t−1),x)

))−x
∥∥∥

2

≤ 2
∥∥∥PK

(
x(t−1) −ηh(x(t−1),x)

)−x
∥∥∥

2
Ï Definition of projection

≤ 2max
{
ϕ,

2

ϕ
‖x(t−1) −x−ηh(x(t−1),x)‖K ◦

(ϕ)

}
(∀ϕ> 0) (24)

Ï Property of projection onto star-shaped set [Corollary 8.3, PVY17]

≤ 2max

{
ϕ,2µ1‖x(t−1) −x‖2 +2

√
µ2‖x(t−1) −x‖2 +2µ3

}
Ï RAIC (25)

≤ 4µ1‖x(t−1) −x‖2 +4
√
µ2‖x(t−1) −x‖2 +4µ3 Ï if ϕ≤µ3

Trade-off in choosing ϕ: we use ϕ= Θ̃(µ3)
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RAIC - Parameters µi

‖x(t) −x‖2 ≤ 4µ1‖x(t−1) −x‖2 +4
√

µ2‖x(t−1) −x‖2 +4µ3 (26)

• µ2 and µ3: convergence error of PGD

• (26) −→ convergence to an ℓ2-error of O(µ2 +µ3)

• µ1: convergence rate of PGD

• 0 ¿µ1 ≤ 1
4 : linear convergence, O(log(ϵ−1)) steps

• µ1 = 0: quadratic convergence, O(loglog(ϵ−1)) steps
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RAIC - Parameters µi

• µ4: initialization required by PGD

• Eq. (24) → Eq. (25) requires ‖x(t−1) −x‖2 ≤µ4, so we need ‖x(0) −x‖2 ≤µ4

• µ4 = diameter of X −→ global RAIC, starts with arbitrary point in the signal set

• µ4 ¿ diameter of X −→ local RAIC, starts with a good initialization ‖x(0) −x‖2 ≤µ4
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What Remains?

Main Theorem (Informal):

If

m ≥ C2(∆∨Λ)

(
ω2(K(r))

r3
+ logN (X ,r/2)

r

)
, (27)

then ‖x̂pgd −x‖2 = Õ(r)

What Remains?

Prove RAIC:

1

r

∥∥∥u−v−η ·h(u,v)
∥∥∥
K ◦

(r)
≤ ϵ‖u−v‖2 +

√
Õ(r)‖u−v‖2 + Õ(r) (28)

for all u,v ∈X satisfying ‖u−v‖2 ≤µ4, under the sample complexity (27)
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Gradient

Recall:

h(u,v) := 1

m

m∑
i=1

(
Q(a>i u−τi)−Q(a>i v−τi)

)
ai

= 1

m

m∑
i=1

sign(a>i (u−v))
∣∣∣Q(a>i u−τi)−Q(a>i v−τi)

∣∣∣ai

Ï Q is increasing

= 1

m

∑
i∈Ru,v

sign(a>i (u−v))
∣∣∣Q(a>i u−τi)−Q(a>i v−τi)

∣∣∣ai

Ï Ru,v := {
i ∈ [m] : Q(a>i u−τi) 6= Q(a>i v−τi)

}
h(u,v) only contains |Ru,v| summands!
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Gradient Clipping

h(u,v) = 1

m

∑
i∈Ru,v

sign(a>i (u−v))
∣∣∣Q(a>i u−τi)−Q(a>i v−τi)

∣∣∣ai

• One-bit case: if i ∈ Ru,v, then |Q(a>i u−τi)−Q(a>i v−τi)| =∆ and hence

h(u,v) = ∆

m

∑
i∈Ru,v

sign(a>i (u−v))ai. (29)

• Multi-bit case: if i ∈ Ru,v, all the following are possible

|Q(a>i u−τi)−Q(a>i v−τi)| = ∆, 2∆, · · · , ℓ∆︸ ︷︷ ︸
add to difficulty

forbid unified analysis
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Gradient Clipping

• We propose to clip h(u,v) to

ĥ(u,v) := ∆

m

∑
i∈Ru,v

sign(a>i (u−v))ai (30)

and seek to prove

1

r

∥∥∥u−v−η · ĥ(u,v)
∥∥∥
K ◦

(r)
≤ ϵ‖u−v‖2 +

√
Õ(r)‖u−v‖2 + Õ(r),∀u,v ∈X , ‖u−v‖2 ≤µ4.

(31)

• One-bit case: No issue

• Multi-bit case: deviation −→ η
r ‖h(u,v)− ĥ(u,v)‖K ◦

(r)
where

h(u,v)− ĥ(u,v) = 1

m

∑
i∈Ru,v

sign(a>i (u−v))
[
|Q(a>i u−τi)−Q(a>i v−τi)|−∆

]
︸ ︷︷ ︸

:=D1

ai (32)
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How Can We Work With ĥ in Multi-Bit Case?

• Idea: set µ4 = c′∆ with very small c′, restrict the attention to ‖u−v‖2 ≤ c′∆
• P(D1 6= 0, i ∈ Ru,v) is very small!

h(u,v) ≈ ĥ(u,v) h(u,v), ĥ(u,v) differ so much

• Seek initialization ‖x(0) −x‖2 ≤µ4 = c′∆
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Covering Argument

• Goal: bound 1
r ‖u−v−η · ĥ(u,v)‖K ◦

(r)
for all u,v ∈X , ‖u−v‖2 ≤µ4

• let Nr be a minimal r-net (r ≤ µ4
2 ) of X such that |Nr | =N (X ,r). Then, for any

u,v ∈X obeying ‖u−v‖2 ≤µ4, we find their closest points in Nr :

u1 := arg min
w∈Nr

‖w−u‖2 and v1 := arg min
w∈Nr

‖w−v‖2. (33)
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What to Bound?

Passing to the net:

r−1‖u−v−η · ĥ(u,v)‖K ◦
(r)

≤ r−1‖u1 −v1 −η · ĥ(u1,v1)‖K ◦
(r)︸ ︷︷ ︸

bound on finite net

+r−1‖u−u1‖K ◦
(r)

+ r−1‖v−v1‖K ◦
(r)︸ ︷︷ ︸

≤2r

+ η

r

(
‖ĥ(u1,v1)− ĥ(u,v)‖K ◦

(r)

)
︸ ︷︷ ︸

approximation gap
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Approximation Gap

• Bound
η
r

(‖ĥ(u1,v1)− ĥ(u,v)‖K ◦
(r)

)
for all (u,v) and corresponding (u1,v1)

• Recall: h(p,q) contains only |Rp,q| summands.

• Reducing number of nonzero contributors:

ĥ(u1,v1)︸ ︷︷ ︸
|Ru1,v1 |

− ĥ(u,v)︸ ︷︷ ︸
|Ru,v|

≈ h(u1,v1)−h(u,v) = h(u1,u)+h(v,v1) ≈ ĥ(u1,u)︸ ︷︷ ︸
|Ru1,u|

+ ĥ(v,v1)︸ ︷︷ ︸
|Rv,v1 |

• Stronger closeness: ‖u−v‖2 ≤µ4, ‖u1 −v1‖2 ≤ 2µ4 −→ ‖u−u1‖2 ≤ r, ‖v−v1‖2 ≤ r
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Approximation Gap

• Very few nonzero contributors: |Ru1 ,u|+ |Rv,v1 | = Õ( mr
∆∨Λ )

Ï by quantized embedding property (small to small)

Crude argument suffices:

η

r
‖ĥ(u1,u)‖K ◦

(r)

= sup
w∈K(r)

∆η

mr

∑
i∈Ru1,u

sign(a>i (u1 −u))a>i w

≤ sup
w∈K(r)

∆η

mr
max
I⊂[m]

|I|=Õ( mr
∆∨Λ )

∑
i∈I

|a>i w|

Ï by triangle inquality and |Ru1 ,u| = Õ
( mr

∆∨Λ

)
= ∆η

∆∨Λ
Õ(r) = Õ(r)

Ï by a well-known bound
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Bound on Finite Net - Orthogonal Decomposition

• Bound 1
r ‖p−q−η · ĥ(p,q)‖K ◦

(r)
for all p,q ∈Nr satisfying ‖p−q‖2 ≤ 2µ4

• Find
(
β1 := p−q

‖p−q‖2
, β2

)
as orthonormal basis in span(p,q) such that

p = u1β1 +u2β2 and q = v1β1 +u2β2 (34)

for some coordinates (u1,u2,v1)
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Bound on Finite Net - Orthogonal Decomposition

• Decompose ĥ(p,q) along three directions: β1, β2, {span(β1,β2)}⊥

ĥ(p,q) = 〈ĥ(p,q),β1〉β1 +〈ĥ(p,q),β2〉β2 + [ĥ(p,q)−〈ĥ(p,q),β1〉β1 −〈ĥ, (p,q),β2〉β2︸ ︷︷ ︸
:=ĥ⊥(p,q)

]

• Substituting into 1
r ‖p−q−ηĥ(p,q)‖K ◦

(r)
:

1

r
‖p−q−η · ĥ(p,q)‖K ◦

(r)

≤ |‖p−q‖2 −η · 〈ĥ(p,q),β1〉︸ ︷︷ ︸
:=T

p,q
1

|+ |η · 〈ĥ(p,q),β2〉︸ ︷︷ ︸
:=T

p,q
2

|+ r−1 ·η‖ĥ⊥(p,q)‖K ◦
(r)︸ ︷︷ ︸

:=T
p,q
3

: = |‖p−q‖2 −T
p,q
1 |+ |T p,q

2 |+ r−1 ·T
p,q
3 . (35)
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Bound |‖p−q‖2 −T p,q
1 |

T
p,q
1 := η · 〈ĥ(p,q),β1〉 =

η∆

m

m∑
i=1

|a>i β1|1(E(i)
p,q)

Assumption 4: Moment Bound I

For p,q ∈X satisfying ‖p−q‖2 ≤ 2µ4, we suppose

E

(
|a>i β1|p1(E(i)

p,q)
)
≤ c(5)Pp,q · p!

2
, ∀p ≥ 2 (36a)

E
(|a>i β1|1(E(i)

p,q)
)≈ c(6)‖p−q‖2

∆∨Λ
, (36b)

hold for some c(5) ,c(6) > 0

Bernstein’s inequality (under η= ∆∨Λ
∆c(6) ):

|‖p−q‖2 −T
p,q
1 |≲

√
[∆∨Λ] log(N (X ,r))‖p−q‖2

m
+ [∆∨Λ] log(N (X ,r))

m

(27)≤
√

O(r)‖p−q‖2 +O(r)
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Bound |T p,q
2 |

T
p,q
2 := η · 〈ĥ(p,q),β2〉 =

η∆

m

m∑
i=1

sign(a>i β1)(a>i β2)1(E(i)
p,q),

Assumption 5: Moment Bound II

For any p,q ∈X obeying 0 < ‖p−q‖2 ≤ 2µ4, we suppose

E

(
|a>i β2|p1(E(i)

p,q)
)
≤ c(7)Pp,q · p!

2
, ∀p ≥ 2 (37a)

E

(
sign(a>i β1)a>i β21(E(i)

p,q)
)
≈ 0, (37b)

hold for some c(7) > 0

Bernstein’s inequality:

|T p,q
2 |≲

√
[∆∨Λ] log(N (X ,r))‖p−q‖2

m
+ [∆∨Λ] log(N (X ,r))

m

(27)≤
√

O(r)‖p−q‖2 +O(r)

CCOM & MINDS @ UCSD Efficient and Optimal Quantized Compressed Sensing April 8, 2025 58 / 69



Quantized CS HDM PGD and RAIC Prove RAIC Conclusions

Bound r−1T p,q
3

T
p,q
3 := sup

w∈K(r)

η ·w>ĥ⊥(p,q) = sup
w∈K(r)

η∆

m

m∑
i=1

sign(a>i β1)
[
ai − (a>i β1)β1 − (a>i β2)β2

]>w︸ ︷︷ ︸
:=J

p,q
i,w

·1(E(i)
p,q).

Assumption 6: Moment Bound III

For any w ∈Rn and any p,q ∈X obeying 0 < ‖p−q‖2 ≤ 2µ4, we suppose

E

(
|Jp,q

i,w |p1(E(i)
p,q)

)
≤Pp,q(c(8)pp)p , ∀p ≥ 2, ∀w ∈Sn−1 (38a)

E

(
J

p,q
i,w 1(E(i)

p,q)
)
≈ 0, ∀w ∈Sn−1 (38b)

hold for some c(8) > 0, ε(4) ≥ 0.
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Bound r−1T p,q
3

T
p,q
3 = sup

w∈K(r)

η∆

m

∑
i∈Rp,q

J
p,q
i,w

Conditional Concentration: (similar to [MM24])

• We condition on |Rp,q| = rp,q, then

T
p,q
3 ∼ sup

w∈K(r)

η∆

m

rp,q∑
i=1

Ĵi(w), Ĵi(w) iid∼ J
p,q
i,w |{E(i)

p,q}

• Moment bound in Assumption 7 states ‖Ĵi(w)‖ψ2 = O(c(8)), so we use Talagrand’s and
capture ω(K(r))

Chernoff Inequality:

• It is easy to get rid of the conditioning: rp,q ∼ Bin(m,Pp,q)

Final bound:

r−1T
p,q
3 ≲

√√√√ ‖p−q‖2[∆∨Λ][
ω2(K(r))

r2 + logN (X ,r)]

m
+

[∆∨Λ][
ω2(K(r))

r2 + logN (X ,r)]

m
(27)≤

√
O(r)‖p−q‖2 +O(r)
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Proof is Complete!

Combining all the pieces:

η

r

(
‖ĥ(u1,u)‖K ◦

(r)
+‖ĥ(v,v1)‖K ◦

(r)

)
= Õ(r)

|‖p−q‖2 −T
p,q
1 | ≤

√
O(r)‖p−q‖2 +O(r)

|T p,q
2 | ≤

√
O(r)‖p−q‖2 +O(r)

r−1T
p,q
3 ≤

√
O(r)‖p−q‖2 +O(r)

the desired RAIC follows!
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Understanding the Moment Bound (Vague)

Moment bounds in Assumption 5:

E

(
|a>i β1|p1(E(i)

p,q)
)
≤ c(5)Pp,q · p!

2
, ∀p ≥ 2 (39)

Kind of "independence" between a>i β1 and E(i)
p,q:

• Cauchy-Schwarz gives

E

(
|a>i β1|p1(E(i)

p,q)
)
≤

√
E|a>i β1|2p

√
P(E(i)

p,q) ≤ c(5)p!

2

√
Pp,q (40)

but the bound is not strong enough when Pp,q = o(1)

(Cauchy-Schwarz is tight if |a>i β1|p = t1(E(i)
p,q) for some t > 0)

• When a>i β1 and E(i)
p,q are independent:

E

(
|a>i β1|p1(E(i)

p,q)
)
=E(|a>i β1|p

)
E

(
1(E(i)

p,q)
)≤ c(5)p!

2
Pp,q (41)

we are done!
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Why Moment Bounds are Satisfied by (D)1bCS & DMbCS?

Moment bound in Assumption 5:

E

(
|a>i β1|p1(E(i)

p,q)
)
≤ c(5)Pp,q · p!

2
, ∀p ≥ 2

where

E(i)
p,q =

{
Q(a>i p−τi) 6= Q(a>i q−τi)

}
=

{
Q(u1a>i β1 +u2a>i β2 −τi) 6= Q(v1a>i β1 +u2a>i β2 −τi)

}
(42)

1bCS: a>i β1,a>i β2
iid∼ N (0,1)

E

(
|a>i β1|p1(E(i)

p,q)
)
=E

(
|a>i β1|p ·Pa>i β2∼N (0,1)[E(i)

p,q]
)

(43)

D1bCS & DMbCS:

E

(
|a>i β1|p1(E(i)

p,q)
)
=E

(
|a>i β1|p ·Pτi∼U [−Λ,Λ][E(i)

p,q]
)
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Concluding Remarks

This Talk:

• RAIC is useful in other nonconvex optimization problems

• Under sub-Gaussian A, the HMD rates only require two essential components —
small-ball probability and separation probability

• Under some additional moment bounds, PGD achieves the same rate as HDM

• Validating these assumptions, the PGD rates improve on or match the best known rates
in all instances. [CY24b]22

Questions:

• The tightness of O(( k
m )1/3) in recovering signals in

p
kBn

1 ;

• Optimal algorithms in structured sensing matrices;

• Optimal QCS of signals in a generative prior (may not be star-shaped)?

• · · ·

22Optimal Quantized Compressed Sensing via Projected Gradient Descent, J. Chen & M. Yuan, Preprint, 2024.
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Thank you for listening

chenjr58@connect.hku.hk
https://junrenchen58.github.io/
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