Efficient and Optimal Quantized Compressed Sensing

Junren Chen

Department of Mathematics University of Hong Kong

(Joint work with Ming Yuan)

April 8, 2025

CCOM & MINDS Seminar Department of Mathematics University of California, San Diego

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Quantized CS	
000000000000000000000000000000000000000	

HDM 000000 2GD and RAIC 000000000000000

Conclusions 000000

Outline

Quantized CS

2 HDM

3 PGD and RAIC

4 Prove RAIC

イロト イロト イヨト イヨト

æ

HDM 000000 GD and RAIC 0000000000

Conclusions 000000

1 Quantized CS

2 HDM

3 PGD and RAIC

4 Prove RAIC

6 Conclusions

CCOM	& MIN	DS@	UCSD

イロト イロト イヨト イヨト

æ

Quantized CS

HDM

PGD and RAIC 00000000000

Conclusions 000000

(Linear) Compressed Sensing

- Goal: recover *structured* $\mathbf{x} \in \mathbb{R}^n$ from $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{y} = \mathbf{A}\mathbf{x}$
- $\mathbf{A} = [\mathbf{a}_1, \cdots, \mathbf{a}_m]^\top$, then we observe $y_i = \mathbf{a}_i^\top \mathbf{x}, \quad i = 1, \cdots, m$
- Result: *k*-sparse **x** can be exactly recovered from $O(k\log(\frac{en}{k}))$ Gaussian measurements via constrained ℓ_1 -norm minimization

$$\hat{\mathbf{x}}_{bp} = \operatorname{argmin} \|\mathbf{u}\|_{1}, \quad \text{s.t. } \mathbf{A}\mathbf{u} = \mathbf{y}$$
(1)

Nonlinear Compressed Sensing

 $\hat{\mathbf{o}}_{\mathbf{0}}$

Ouantized CS

- Goal: recover structured $\mathbf{x} \in \mathbb{R}^n$ from $\mathbf{A} \in \mathbb{R}^{m \times n}$ from $y_i = f_i(\mathbf{a}_i^\top \mathbf{x}), i = 1, \cdots, m$
- Result: Under Gaussian matrix and fairly mild condition on {f_i)^m_{i=1}, we can ignore the nonlinearity and use G-Lasso

$$\hat{\mathbf{x}}_{\text{GLasso}} = \operatorname{argmin} \ \frac{1}{2m} \|\mathbf{y} - \mathbf{A}\mathbf{u}\|_2^2 + \lambda \|\mathbf{u}\|_1 \tag{2}$$

to recover k-sparse **x** to ℓ_2 error [PV16]¹

$$\|\hat{\mathbf{x}}_{\text{GLasso}} - \mathbf{x}\|_2 = \tilde{O}\left(\sqrt{\frac{k}{m}}\right)$$

• In general, we cannot do better without knowing f_i ! Just think of noisy linear regression $y = \mathbf{A}\mathbf{x} + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_m)$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

¹ The generalized lasso with non-linear observations. Y. Plan & R. Vershynin, 2016, TIT.

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	000000
Quantizer				

• An *L*-level quantizer *Q* which quantizes $q \in \mathbb{R}$ to

$$Q(q) = \begin{cases} q_1, & \text{if } q < b_1 \\ q_2, & \text{if } b_1 \le q < b_2 \\ \cdots & & \\ q_{L-1}, & \text{if } b_{L-2} \le q < b_{L-1} \\ q_L, & \text{if } q \ge b_{L-1} \end{cases}$$
(3)

- for some quantization thresholds $b_1 < b_2 < \cdots < b_{L-1}$
- and some quantized values $q_1 < q_2 < \cdots < q_L$.
- Resolution: If $L \ge 3$, we define

$$\Delta := \min_{j=1,\cdots,L-2} |b_{j+1} - b_j|;$$
(4)

If L = 2, we define $\Delta := 2$ (just a convention).

The values $(q_i)_{i=1}^{L-1}$ are not important, so we could assume

$$q_{i+1} = q_i + \Delta, \quad i = 1, 2, \cdots, L - 1.$$
 (5)

イロト イポト イヨト イヨト

An important instance of nonlinear CS:

• Goal of Quantized CS: recover *structured* signal $\mathbf{x} \in \mathbb{R}^n$ from

$$\mathbf{y} = Q(\mathbf{A}\mathbf{x} - \boldsymbol{\tau}) = \begin{bmatrix} Q(\mathbf{a}_1^\top \mathbf{x} - \boldsymbol{\tau}_1) \\ Q(\mathbf{a}_2^\top \mathbf{x} - \boldsymbol{\tau}_2) \\ \vdots \\ Q(\mathbf{a}_m^\top \mathbf{x} - \boldsymbol{\tau}_m) \end{bmatrix}$$

- $\mathbf{A} \in \mathbb{R}^{m \times n}$: we focus on *sub-Gaussian* matrix
- $\boldsymbol{\tau} \in \mathbb{R}^{m}$: dithering noise helps reconstruction $[JR72]^{2}$
- we focus on $\boldsymbol{\tau} \sim \mathcal{U}[-\Lambda, \Lambda]^m$ independent of A
- $\Lambda = 0$ reduces to the non-dithered case

8 / 69

²The application of dither to the quantization of speech signals. N. Jayant, L. Rabiner, 1972.

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	000000
Signal Structure				

• $\mathbf{x} \in \mathcal{K}$ for star-shaped set \mathcal{K} (*Definition*: $\forall \mathbf{u} \in \mathcal{K}$, $t\mathbf{u} \in \mathcal{K}$ for any $t \in [0, 1]$)

- Examples:
 - *k*-sparse signals $\Sigma_k^n = \{\mathbf{u} \in \mathbb{R}^n : \|\mathbf{u}\|_0 \le k\};\$
 - low-rank matrices $M_{\bar{r}}^{n_1,n_2} = \{\mathbf{M} \in \mathbb{R}^{n_1 \times n_2} : \operatorname{rank}(\mathbf{M}) \le \bar{r}\};$
 - effectively sparse signals $\sqrt{k}\mathbb{B}_1^n = \{\mathbf{u} \in \mathbb{R}^n : \|\mathbf{u}\|_1 \le \sqrt{k}\}.$

• • • • • • • • • • •

Quantized CS	
000000000000000000000000000000000000000	

HDM 000000 PGD and RAIC

Conclusions 000000

Signal Norm

•
$$\mathbf{x} \in \mathbb{A}^{\beta}_{\alpha} = \{ \mathbf{u} \in \mathbb{R}^{n} : \alpha \leq \|\mathbf{u}\|_{2} \leq \beta \}$$

Signal space: Taken collectively, we consider the recovery of the signals in

$$\mathscr{X} := \mathscr{K} \cap \mathbb{A}^{\beta}_{\alpha} \tag{6}$$

イロト イポト イヨト イヨト

æ

One-Bit Compressed Sensing (1bCS)

Problem setup

- Recover **x** from $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x}) = (\operatorname{sign}(\mathbf{a}_1^\top \mathbf{x}), \cdots, \operatorname{sign}(\mathbf{a}_m^\top \mathbf{x}))^\top$, with $\mathbf{A} \sim \mathcal{N}^{m \times n}(0, 1)$
- $\mathbf{x} \in \mathcal{K} \cap \mathbb{S}^{n-1} \longrightarrow$ we cannot distinguish \mathbf{x} and $2\mathbf{x}$

Optimal rate

- Hamming distance $d_H(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^{m} \mathbf{1}(u_i \neq v_i)$
- Hamming distance minimization (HDM):

$$\hat{\mathbf{x}}_{hdm} = \arg\min_{\mathbf{u}\in\mathcal{K}\cap\mathbb{S}^{n-1}} d_H(\operatorname{sign}(\mathbf{A}\mathbf{u}), \mathbf{y})$$
(7)

- $\mathcal{K} = \sum_{k=1}^{n} \|\hat{\mathbf{x}}_{hdm} \mathbf{x}\|_2 = \tilde{O}(\frac{k}{m}) [\text{JLBB13}]^3$ (Optimal rate)
- This is sharper than $\Theta(\sqrt{k/m})$ for noisy regression
- $\mathcal{K} = \sqrt{k}\mathbb{B}_1^n$: $\|\hat{\mathbf{x}}_{hdm} \mathbf{x}\|_2 = \tilde{O}((\frac{k}{m})^{1/3})$ [OR15]⁴ (Fastest rate)

 4 Near-optimal bounds for binary embeddings of arbitrary sets. S. Oymak & B. Recht, Arxiv, 2015. < 🗆 🕨 (🗇) (🔤) (😇) ()

³ Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors. L. Jacques, J. Laska, P. T. Boufounos; R. Baraniuk, 13 TIT.

Conclusions 000000

Hyperplane Tessellation - 1bCS

1bCS \iff hyperplane tessellation of a subset of \mathbb{S}^{n-1} [PV14]⁵

⁵ Dimension reduction by random hyperplane tessellations, Y. Plan & R. Vershynin, 2014 Discrete & Computational Geometry 💉 🚊 💉 🚊 🔗

Geometry of 1bCS - Gaussian Hyperplane Tessellation

Go beyond Gaussian design? [ALPV14];6

 $\{-1,1\}$ -valued A (e.g., Bernoulli design) does not work:

⁶ One-bit compressed sensing with non-Gaussian measurements, A. Ai, A. Lapanowski, Y. Plan, R. Vershynin, Linear Algebra and its Applications, 2014.

HDM

PGD and RAIC 00000000000

Efficient Algorithms for 1bCS

algorithm	error rate	signal space	uniformity
Linear Program [PV13] ⁷	$\tilde{O}\left((\frac{k}{m})^{1/5}\right)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{S}^{n-1}$	1
Convex Relaxation [PV12] ⁸	$\tilde{O}\bigl((\tfrac{k}{m})^{1/4}\bigr)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{S}^{n-1}$	×
Generalized Lasso [PV16]	$\tilde{O}\bigl((\tfrac{k}{m})^{1/2}\bigr)$	$\Sigma_k^n \cap \mathbb{S}^{n-1}$	×
PBP [PVY17] ⁹	$\tilde{O}\bigl((\frac{k}{m})^{1/2}\bigr)$	$\Sigma_k^n \cap \mathbb{S}^{n-1}$	×
Adaboost [CKLG22] ¹⁰	$\tilde{O}\left((\frac{k}{m})^{1/3}\right)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{S}^{n-1}$	1
NBIHT [MM24] ¹¹	$\tilde{O}(\frac{k}{m})$	$\Sigma_k^n \cap \mathbb{S}^{n-1}$	1
PGD (our work)	$\tilde{O}\left(\frac{\bar{r}(n_1+n_2)}{m}\right)$	$M^{n_1,n_2}_{\bar{r}} \cap \{\ \mathbf{U}\ _F = 1\}$	1
PGD (our work)	$\tilde{O}\bigl((\tfrac{k}{m})^{1/3}\bigr)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{S}^{n-1}$	1

⁷One-bit compressed sensing by linear programming, Y. Plan & R. Vershynin, CPAM, 2013.

⁸ Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, Y. Plan & R. Vershynin, 12 TIT.

⁹High-dimensional estimation with geometric constraints, Y. Plan, R. Vershynin & E. Yudovina, 17 inf. inference.

¹⁰Adaboost and robust one-bit compressed sensing, G. Chinot, F. Kuchelmeister, M. Löffler, S. Geer, 22 MSL.

¹¹ Binary iterative hard thresholding converges with optimal number of measurements for 1-bit compressed sensing, N. Matsumoto & A. Mazumdar, 24 JACM

^{14/69}

Dithered One-Bit Compressed Sensing (D1bCS)

Downsides of 1bCS

- · hard to go beyond Gaussian design;
- unable to recover signal norm (see a fix by Gaussian dither $[\mathrm{KSW16}]^{12}$)

D1bCS Problem Setup

- using uniform dither $\boldsymbol{\tau} \sim \mathscr{U}[-\lambda, \lambda]^m$ addresses both issues [DM21],¹³ [TR20]¹⁴
- Model: recover $\mathbf{x} \in \mathcal{K} \cap \mathbb{B}_2^n$ from

 $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x} - \boldsymbol{\tau})$

under sub-Gaussian A

¹²One-bit compressive sensing with norm estimation, K. Knudson, R. Saab, R. Ward, 16 TIT.

¹³ Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing, S. Dirksen & S. Mendelson, 2021 JEMS

¹⁴ The generalized lasso for sub-gaussian measurements with dithered quantization, C. Thrampoulidis & A. S. Rawat, 20 TTE + 4 🚊 + 🖉 🗸

000000

PGD and RAIC 0000000000

Conclusions 000000

Geometric of D1bCS - Non-Gaussian Hyperplane Tessellation

• Theorem 1.9 in [DM21]: HDM

$$\hat{\mathbf{x}}_{hdm} = \arg\min_{\mathbf{u}\in\mathcal{K}\cap\mathbb{B}_2^n} d_H(\operatorname{sign}(\mathbf{A}\mathbf{u}-\boldsymbol{\tau}), \mathbf{y})$$
(8)

achieves the optimal rate $\tilde{O}(\frac{k}{m})$ if $\mathcal{K} = \Sigma_{k}^{n}$ and the fastest rate $\tilde{O}((\frac{k}{m})^{1/3})$ if $\mathcal{K} = \sqrt{k}\mathbb{B}_{1}^{n}$

HDM

PGD and RAIC 00000000000

Conclusions 000000

Efficient Algorithms for D1bCS

algorithm	error rate	signal space	uniformity
Convex Relaxation [DM21]	$\tilde{O}\big((\tfrac{k}{m})^{1/4}\big)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{B}_2^n$	✓
Con. Rel. (one-sided ℓ_1) [JMPS21] ¹⁵	$\tilde{O}\bigl((\tfrac{k}{m})^{1/3}\bigr)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{B}_2^n$	\checkmark
Generalized Lasso [TR20]	$\tilde{O}\left((\frac{k}{m})^{1/2}\right)$	$\Sigma_k^n \cap \mathbb{B}_2^n$	×
PGD (our work)	$\tilde{O}(\frac{k}{m})$	$\Sigma_k^n \cap \mathbb{B}_2^n$	1
PGD (our work)	$\tilde{O}\big((\tfrac{k}{m})^{1/3}\big)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{B}_2^n$	\checkmark

¹⁵ Quantized Compressed Sensing by Rectified Linear Units, H. C. Jung, J. Maly, L. Palzer, A. Stollenwerk; 21/TTI. 🗇 🕨 ፋ 🚊 🕨 🚊 🔷 🔍

HDM 000000 PGD and RAIC 00000000000

Conclusions 000000

Dithered Multi-Bit Compressed Sensing (DMbCS)

- Another benefit of dithering: generalization to multi-bit sensing
- · We consider the uniform quantizer

$$Q_{\delta}(a) = \delta\left(\left\lfloor \frac{a}{\delta} \right\rfloor + \frac{1}{2}\right) = \begin{cases} \cdots \\ -\frac{3\delta}{2}, & \text{if } a \in (-2\delta, -\delta) \\ -\frac{\delta}{2}, & \text{if } a \in (-\delta, 0) \\ \frac{\delta}{2}, & \text{if } a \in (0, \delta) \\ \frac{3\delta}{2}, & \text{if } a \in (\delta, 2\delta) \\ \cdots \end{cases}$$
(9)

• QCS with Dithered Uniform Quantizer: Under $\tau \sim \mathcal{U}\left(\left[-\frac{\delta}{2}, \frac{\delta}{2}\right]^m\right)$ and *sub-Gaussian* A, we can accurately recover structured signals $\mathbf{x} \in \mathcal{K} \cap \mathbb{B}_2^n$ from [TR20], [XJ20]¹⁶

$$\mathbf{y} = Q_{\delta} (\mathbf{A}\mathbf{x} - \boldsymbol{\tau}). \tag{10}$$

¹⁶ Quantized compressive sensing with rip matrices: The benefit of dithering, C. Xu & L. Jacques, 2020 Inf. inference. + 4 🚊 + 4 🧵 + 🖉 🦿 🖓 🗢

Dithered Multi-Bit Compressed Sensing (DMbCS)

- Q_{δ} does not immediately sample finite bits
- For some even integer $L \ge 4$, we consider Q_{δ} with *saturation* when $\{a \in \mathbb{R} : |a| \ge \frac{L\delta}{2}\}$:

$$Q_{\delta,L}(a) = Q_{\delta}(a) \cdot \mathbb{1}\left(|a| < \frac{L\delta}{2}\right) + \frac{(L-1)\delta}{2} \mathbb{1}\left(a \ge \frac{L\delta}{2}\right) + \frac{(1-L)\delta}{2} \mathbb{1}\left(a \le \frac{-L\delta}{2}\right)$$
(11)

- **DMbCS**: recover $\mathbf{x} \in \mathcal{K} \cap \mathbb{B}_2^n$ from $\mathbf{y} = Q_{\delta,L}(\mathbf{A}\mathbf{x} \boldsymbol{\tau})$
- $\mathcal{K} = \sum_{k=1}^{n} \text{optimal rate } \Omega(\frac{k}{mL}) \text{ [BJKS15]}^{17}$
- $\mathcal{K} = \sqrt{k\mathbb{B}_1^n}$: the fastest rate $\tilde{O}((\frac{k}{mL})^{1/3})$ [JMPS21]
- Additional challenge nail down the role of quantization level L

¹⁷ Quantization and Compressive Sensing, P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, 2015. 🔫 🗆 🕨 🍕 🚍 🕨 🍕 🚍 🕨 🍕 🚍

Quantized CS	
000000000000000000000000000000000000000	

HDM

PGD and RAIC 000000000000

Conclusions 000000

$Q_{\delta} \& Q_{\delta,L}$ with Saturation

Figure 1: The uniform quantizer Q_{δ} and its saturated versions $Q_{\delta,4}$ and $Q_{\delta,6}$ under $\delta = 1$.

イロト イポト イヨト イヨト

Geometric of DMbCS - Parallel Non-Gaussian Hyperplanes

L = 4

HDM

PGD and RAIC 00000000000

Conclusions 000000

Efficient Algorithms for DMbCS

algorithm	error rate	signal space	uniformity
Con. Rel. (one-sided ℓ_1) [JMPS21]	$\tilde{O}\bigl((\tfrac{k}{mL})^{1/3}\bigr)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{B}_2^n$	$\checkmark, Q_{\delta,L}$
Generalized Lasso [TR20]	$\tilde{O}\!\left(\tfrac{1}{L}(\tfrac{k}{m})^{1/2}\right)$	$\Sigma_k^n \cap \mathbb{B}_2^n$	$oldsymbol{X},Q_{oldsymbol{\delta}}$
PBP [XJ20]	$\tilde{O}\big((1+\delta)(\frac{k}{m})^{1/2}\big)$	$\Sigma_k^n \cap \mathbb{B}_2^n$	\checkmark, Q_{δ}
PGD (our work)	$\tilde{O}(\frac{k}{mL})$	$\Sigma_k^n \cap \mathbb{B}_2^n$	$\checkmark, Q_{\delta,L}$
PGD (our work)	$\tilde{O}\left((\frac{k}{mL})^{1/3}\right)$	$\sqrt{k}\mathbb{B}_1^n\cap\mathbb{B}_2^n$	$\checkmark, Q_{\delta,L}$

イロト イポト イヨト イヨト

æ

Ouantized CS

How to capture complexity of an arbitrary set?

 $\omega(\mathscr{U}) = \mathbb{E}_{\mathbf{g} \sim \mathscr{N}(0,\mathbf{I}_n)} \sup_{\mathbf{u} \in \mathscr{U}} \langle \mathbf{g}, \mathbf{u} \rangle: \text{ Gaussian width}$

 $\mathcal{N}(\mathcal{U}, r)$: covering number at scale r

 $\log \mathcal{N}(\mathcal{U}, r)$: metric entropy at scale r

Examples:

•
$$\omega(\mathbb{B}_2^n) \simeq \sqrt{n}$$
 and $\log \mathcal{N}(\mathbb{B}_2^n, r) \le n\log(\frac{C}{r})$

•
$$\omega(\Sigma_k^n \cap \mathbb{B}_2^n) \asymp \sqrt{k \log(\frac{en}{k})}$$
 and $\log \mathcal{N}(\Sigma_k^n \cap \mathbb{B}_2^n, r) \lesssim k \log(\frac{en}{rk})$

•
$$\omega(\sqrt{k}\mathbb{B}_1^n \cap \mathbb{B}_2^n) \asymp \sqrt{k\log(\frac{en}{k})}$$
 and $\log \mathcal{N}(\sqrt{k}\mathbb{B}_1^n \cap \mathbb{B}_2^n, r) \lesssim \frac{k}{r^2}\log(\frac{en}{rk})$

Separation

Separation Probability:

$$\mathsf{P}_{\mathbf{u},\mathbf{v}} := \mathbb{P}\Big(Q(\mathbf{a}_i^{\top}\mathbf{u} - \tau_i) \neq Q(\mathbf{a}_i^{\top}\mathbf{v} - \tau_i)\Big)$$

Separation Set:

$$\mathbf{R}_{\mathbf{u},\mathbf{v}} = \left\{ i \in [m] : Q(\mathbf{a}_i^\top \mathbf{u} - \tau_i) \neq Q(\mathbf{a}_i^\top \mathbf{v} - \tau_i) \right\}$$

Separation Event:

 $E_{u,v}^{(i)} := \{i \in \mathbf{R}_{u,v}\}$

Our Result - HDM Bound

HDM Bound: Under

- sub-Gaussian A,
- a small-ball probability,
- a separation probability estimate,

(Informal) Theorem 1: Performance bound for the infeasible program - HDM

For small
$$r > 0$$
 and $r' \approx \frac{r}{\log^{1/2}(r^{-1})}$, if

$$m \ge C_2(\Delta \lor \Lambda) \left(\frac{\omega^2(\mathscr{K}_{(r')})}{r^3} + \frac{\log \mathscr{N}(\mathscr{X}, r')}{r} \right)$$
(12)

then $\|\hat{\mathbf{x}}_{\text{hdm}} - \mathbf{x}\|_2 \le 2r$.

•
$$\mathcal{K}_{(\phi)} := (\mathcal{K} - \mathcal{K}) \cap \phi \mathbb{B}_2^n$$

Our Main Result - PGD Bound

PGD Bound: Under

- sub-Gaussian A,
- small-ball probability,
- · separation probability estimate,
- and **additionally a number of moment bounds** (that convey a weak type of independence between the sensing vector marginals and the separation event),

(Informal) Theorem 2: Performance bound for the efficient algorithm PGD

For small r > 0, if

$$m \ge C_2(\Delta \lor \Lambda) \left(\frac{\omega^2(\mathcal{K}(r))}{r^3} + \frac{\log \mathcal{N}(\mathcal{X}, r/2)}{r} \right)$$
(13)

then $\|\hat{\mathbf{x}}_{pgd} - \mathbf{x}\|_2 = \tilde{O}(r)$.

Takeaway: Under some assumptions, PGD achieves the same rates as HDM.

CCOM & MINDS (@ UCSD
----------------	--------

Quantized CS

2 HDM

3 PGD and RAIC

4 Prove RAIC

6 Conclusions

イロト イポト イヨト イヨト

27 / 69

æ

HDM 0000000

Hamming Distance Minimization

QCS — General context

- recover structured signals $\mathbf{x} \in \mathcal{X} = \mathcal{K} \cap \mathbb{A}^{\beta}_{\alpha}$ from $\mathbf{y} = Q(\mathbf{A}\mathbf{x} \boldsymbol{\tau})$ under sub-Gaussian $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{\tau} \sim \mathcal{U}[-\Lambda, \Lambda]^m$
- Q: L-level quantizer with resolution Δ

Hamming distance minimization (HDM)

• HDM:

$$\hat{\mathbf{x}}_{\text{hdm}} = \arg\min_{\mathbf{u}\in\mathscr{X}} d_H \big(Q(\mathbf{A}\mathbf{u} - \boldsymbol{\tau}), \mathbf{y} \big), \tag{14}$$

· This is the best possible program in the noiseless case

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

HDM 0000000

GD and RAIC)00000000000

Conclusions 000000

Hyperplane Tessellation

イロト イポト イヨト イヨト

ł

Assumptions 1 - Sub-Gaussian Design

• We first unify the HDM performance bounds for specific models—[JLBB13] and [OR15] for 1bCS; [DM21] for D1bCS—under generic assumptions

Assumption 1: Sub-Gaussian Design

The sensing vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ are i.i.d. isotropic sub-Gaussian, i.e., they satisfy $\mathbb{E}(\mathbf{a}_i \mathbf{a}_i^\top) = \mathbf{I}_n$ and $\|\mathbf{a}_i\|_{\Psi_2} \leq C_0$ for some absolute constant C_0 .

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Assumptions 2, 3 - Small-Ball & Separation Probabilities

Assumption 2: Small-ball probability

For any
$$\mathbf{u} \in \mathbb{A}_{\alpha}^{\beta}$$
,
$$\mathbb{P}\left(\min_{j \in [L-1]} |\mathbf{a}_{i}^{\top} \mathbf{u} - \tau_{i} - b_{j}| \leq t\right) \lesssim \frac{t}{\Delta \vee \Lambda}, \quad \forall t > 0.$$

Assumption 3: Separation probability

For any
$$\mathbf{u}, \mathbf{v} \in \mathbb{A}_{\alpha}^{\beta}$$
,
 $\mathsf{P}_{\mathbf{u},\mathbf{v}} \asymp \min\left\{\frac{\|\mathbf{u} - \mathbf{v}\|_2}{\Delta \vee \Lambda}, 1\right\}$

イロト イポト イヨト イヨト

PGD and RAIC 000000000000

Local Hyperplane Tessellation (Quantized Embedding Property)

Theorem 1: Quantized Embedding Property

Let
$$\mathcal{W}$$
 be a set contained in $\mathbb{A}_{\alpha}^{\beta}$, for $\epsilon \in (0, c_0(\Delta \vee \Delta))$, we let $\epsilon' = \frac{c_1 \epsilon}{\log^{1/2}(\Delta \vee \Lambda)}$ and suppose

$$m \ge C_2(\Delta \vee \Lambda) \left(\frac{\omega^2(\mathcal{W}_{(3\epsilon'/2)})}{\epsilon^3} + \frac{\log \mathcal{N}(\mathcal{W}, \epsilon')}{\epsilon} \right).$$
(15)

• (small to small) Under Assumptions 1–2, with probability at least $1 - 2 \exp(-\frac{c_3 m \epsilon}{\Delta \sqrt{\Lambda}})$, for any $\mathbf{u}, \mathbf{v} \in \mathcal{W}$

$$\|\mathbf{u} - \mathbf{v}\|_2 \leq \frac{\epsilon'}{2} \implies \underbrace{d_H \Big(Q(\mathbf{A}\mathbf{u} - \boldsymbol{\tau}), Q(\mathbf{A}\mathbf{v} - \boldsymbol{\tau}) \Big)}_{:= |\mathbf{R}\mathbf{u}, \mathbf{v}|} \leq \frac{C_4 m \epsilon}{\Delta \vee \Lambda}.$$

• (large to large) Under Assumptions 1–3, with probability at least $1 - \exp(-\frac{c_5 m \epsilon}{\Delta \vee \Lambda})$, for any $\mathbf{u}, \mathbf{v} \in \mathcal{W}$

$$\|\mathbf{u} - \mathbf{v}\|_2 \ge 2\epsilon \implies d_H \left(Q(\mathbf{A}\mathbf{u} - \boldsymbol{\tau}), Q(\mathbf{A}\mathbf{v} - \boldsymbol{\tau}) \right) \ge c_6 m \min\left\{ \frac{\|\mathbf{u} - \mathbf{v}\|_2}{\Delta \vee \Lambda}, 1 \right\}.$$

$$d_H \big(Q(\mathbf{A} \hat{\mathbf{x}}_{\text{hdm}} - \boldsymbol{\tau}), Q(\mathbf{A} \mathbf{x} - \boldsymbol{\tau}) \big) = 0 \implies \| \hat{\mathbf{x}}_{\text{hdm}} - \mathbf{x} \|_2 \le 2\epsilon$$

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

PGD and RAIC 00000000000

Takeaway and Computational Problem

Takeaway:

Any sub-Gaussian QCS systems possessing a *separation probability proportional to* ℓ_2 *distance* and *a small-ball probability* achieves optimal sparse recovery rate $\tilde{O}(k/m)$

• Techniques: Similar to [OR15], [DM21]

However, $\hat{\boldsymbol{x}}_{hdm}$ cannot be computed efficiently:

Can we devise an efficient algorithm to achieve error rates of $\hat{x}_{hdm}?$

Quantized CS

2 HDM

3 PGD and RAIC

4 Prove RAIC

6 Conclusions

イロト イポト イヨト イヨト

æ

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	○●○○○○○○○○○	000000000000000000000000000000000000	000000
HDM is Intractable				

$$\hat{\mathbf{x}}_{\text{hdm}} = \arg\min_{\mathbf{u}\in\mathscr{X}} d_H \big(Q(\mathbf{A}\mathbf{u} - \boldsymbol{\tau}), \mathbf{y} \big)$$

- The intractability of \hat{x}_{hdm} comes from:
- 1. the discrete loss $d_H(Q(\mathbf{A}\mathbf{u} \boldsymbol{\tau}), \mathbf{y}) = \sum_{i=1}^m \mathbf{1} \left(Q(\mathbf{a}_i^\top \mathbf{u} \boldsymbol{\tau}_i) \neq y_i \right)$
- 2. the typically nonconvex constraint $\mathbf{x} \in \mathcal{K} \cap \mathbb{A}^{\beta}_{\alpha}$

35 / 69

- Construct a (slightly different) hamming distance loss:
- Observing $y_i = Q(\mathbf{a}_i^\top \mathbf{x} \tau_i)$ amounts to observing L 1 binary measurements

$$y_{ij} = \operatorname{sign}(\mathbf{a}_i^{\top} \mathbf{x} - \tau_i - b_j), \quad j = 1, \cdots, L - 1.$$
(16)

• With overall (L-1)m binary measurements, we construct

$$\mathscr{L}(\mathbf{u}) := \frac{\Delta}{m} \sum_{i=1}^{m} \sum_{j=1}^{L-1} \mathbb{1}\left(\operatorname{sign}(\mathbf{a}_i^{\top} \mathbf{u} - \tau_i - b_j) \neq y_{i,j}\right)$$
(17)

$$= \frac{\Delta}{m} \sum_{i=1}^{m} \sum_{j=1}^{L-1} \mathbb{1}\left(-y_{ij}(\mathbf{a}_i^{\top} \mathbf{u} - \tau_i - b_j) \ge \mathbf{0}\right),\tag{18}$$

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	000000
One-sided ℓ_1 loss				

• Common idea: to relax 1(a > 0) to the one-sided $\ell_1 \text{ loss max}\{a, 0\} = \frac{a+|a|}{2}$

· Then we obtain

$$\mathscr{L}_{1}(\mathbf{u}) = \frac{\Delta}{2m} \sum_{i=1}^{m} \sum_{j=1}^{L-1} \left[|\mathbf{a}_{i}^{\top}\mathbf{u} - \tau_{i} - b_{j}| - y_{ij}(\mathbf{a}_{i}^{\top}\mathbf{u} - \tau_{i} - b_{j}) \right].$$

with (sub-)gradient of $\mathscr{L}_1(\mathbf{u})$

$$\partial \mathcal{L}_{1}(\mathbf{u}) = \frac{\Delta}{2m} \sum_{i=1}^{m} \sum_{j=1}^{L-1} \left(\operatorname{sign}(\mathbf{a}_{i}^{\top} \mathbf{u} - \tau_{i} - b_{j}) - y_{ij} \right) \mathbf{a}_{i} = \frac{1}{m} \sum_{i=1}^{m} \left(Q(\mathbf{a}_{i}^{\top} \mathbf{u} - \tau_{i}) - Q(\mathbf{a}_{i}^{\top} \mathbf{x} - \tau_{i}) \right) \mathbf{a}_{i},$$
$$\uparrow q_{i+1} = q_{i} + \Delta$$

æ

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	0000€000000		000000
Nonconvex constraint				

- How to deal with the nonconvex constraint?
- $\min_{\mathbf{u} \in \mathscr{X}} \mathscr{L}(\mathbf{u})$ is intractable for nonconvex \mathscr{X} , it is possible to achieve similar estimation through PGD: [OS17],¹⁸ [S19]¹⁹

$$\mathbf{x}^{(t)} = \mathscr{P}_{\mathscr{X}} \left(\mathbf{x}^{(t-1)} - \eta \cdot \partial \mathscr{L}_1(\mathbf{x}^{(t-1)}) \right), \quad t = 1, 2, \cdots$$
(19)

• $\mathscr{X} = \mathscr{K} \cap \mathbb{A}^{\beta}_{\alpha}$, so $\mathscr{P}_{\mathscr{X}}$ is not immediately efficient even for convex \mathscr{K}

→ we use sequential projection

$$\mathscr{P}_{A^{\beta}_{lpha}} \circ \mathscr{P}_{\mathcal{K}}$$

2019 TIT

¹⁸ Fast and reliable parameter estimation from nonlinear observations, S. Oymak, M. Soltanolkotabi, 2017 SIOPT

¹⁹ Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization, M. Soltanolkotabi,

Quantized CS	HDM	PGD and RAIC	Prove RAIC
000000000000000000000000000000000000	0000000	000000000000	000000000000

Projected Gradient Descent for QCS

$$\mathbf{h}(\mathbf{u},\mathbf{v}) := \frac{1}{m} \sum_{i=1}^{m} \left(Q(\mathbf{a}_i^\top \mathbf{u} - \tau_i) - Q(\mathbf{a}_i^\top \mathbf{v} - \tau_i) \right) \mathbf{a}_i$$
(20)

Algorithm 1 Projected Gradient Descent for QCS

1: **Input**: $\mathbf{y} = Q(\mathbf{A}\mathbf{x} - \boldsymbol{\tau}), (\mathbf{A}, \boldsymbol{\tau}), \mathcal{K}, \mathbb{A}^{\beta}_{\alpha}$, initialization $\mathbf{x}^{(0)}$, step size η 2: **For** $t = 1, 2, 3, \cdots$ **do**

$$\mathbf{x}^{(t)} = \mathscr{P}_{\mathbb{A}_{\alpha}^{\beta}} \Big(\mathscr{P}_{\mathcal{X}} \big(\mathbf{x}^{(t-1)} - \eta \cdot \mathbf{h}(\mathbf{x}^{(t-1)}, \mathbf{x}) \big) \Big)$$
(21)

• Specializing to 1bCS of $\mathbf{x} \in \Sigma_k^n \cap \mathbb{S}^{n-1}$ returns NBIHT [JLBB13], [MM24]:

$$\mathbf{x}^{(t)} = \frac{\mathsf{T}_{(k)}(\mathbf{x}^{(t-1)} - \eta \cdot \partial \mathscr{L}_1(\mathbf{x}^{(t-1)}))}{\|\mathsf{T}_{(k)}(\mathbf{x}^{(t-1)} - \eta \cdot \partial \mathscr{L}_1(\mathbf{x}^{(t-1)}))\|_2}$$
(22)

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Restricted Approximate Invertibility Condition (RAIC)

• Dual norm: $\|\mathbf{w}\|_{\mathscr{U}^{\circ}} = \sup_{\mathbf{u}\in\mathscr{U}} \langle \mathbf{u}, \mathbf{w} \rangle$

Definition 1: RAIC

Under some quantizer Q, for some given $\mathscr{D} \subset \mathbb{R}^n$ and $\boldsymbol{\mu} = (\mu_1, \mu_2, \mu_3, \mu_4)$ with non-negative scalars $(\mu_i)_{i=1}^4$, we say $(Q, \mathbf{A}, \boldsymbol{\tau}, \mathscr{K}, \eta)$ respects $(\mathscr{D}, \boldsymbol{\mu})$ -RAIC at scale $\phi > 0$ if

$$\frac{1}{\phi} \|\mathbf{u} - \mathbf{v} - \eta \cdot \mathbf{h}(\mathbf{u}, \mathbf{v})\|_{\mathcal{K}_{(\phi)}^{\circ}} \le \mu_1 \|\mathbf{u} - \mathbf{v}\|_2 + \sqrt{\mu_2 \cdot \|\mathbf{u} - \mathbf{v}\|_2} + \mu_3$$
(23)

holds for any $\mathbf{u}, \mathbf{v} \in \mathcal{D}$ obeying $\|\mathbf{u} - \mathbf{v}\|_2 \le \mu_4$.

Similar notions in [FJPY21],²⁰ [MM24]; we provide generalization

^{20&}lt;sub>NBIHT:</sub> An efficient algorithm for 1-bit compressed sensing with optimal error decay rate, M. P. Friedlander, H. Jeong, Y. Plan, Ö. Ylmaz, TIT, 2021.

Quantized CS 000000000000000000000000000000000000	HDM 0000000	PGD and RAIC 0000000000000	Prove RAIC 000000000000000000000000000000000000	Conclusions 000000
Meaning of RAIC				

• Meaning: the ideal descent step $\mathbf{x}^{(t)} - \mathbf{x}$ — in light of

$$\mathbf{x}^{(t)} - (\mathbf{x}^{(t)} - \mathbf{x}) = \mathbf{x}$$

— is close to the actual step $\eta \mathbf{h}(\mathbf{x}^{(t)}, \mathbf{x})$, in the dual norm sense and up to a few error terms

• Regularity Condition [CLS15]:²¹ $\langle \nabla \mathscr{L}(\mathbf{u}), \mathbf{u} - \mathbf{x} \rangle \ge c_1 \|\mathbf{u} - \mathbf{x}\|_2^2 + c_2 \|\nabla \mathscr{L}(\mathbf{u})\|_2^2$

²¹ Phase Retrieval via Wirtinger Flow: Theory and Algorithms, E. Candès, X. Li, M. Soltanolkotabi, TIT, 2015). 🔫 🗇 🕨 🭕

Why RAIC?

$$\begin{aligned} \|\mathbf{x}^{(t)} - \mathbf{x}\|_{2} &= \left\| \mathscr{P}_{\mathcal{A}_{\alpha}^{\beta}} \left(\mathscr{P}_{\mathcal{K}} \left(\mathbf{x}^{(t-1)} - \eta \mathbf{h}(\mathbf{x}^{(t-1)}, \mathbf{x}) \right) \right) - \mathbf{x} \right\|_{2} \\ &\leq 2 \left\| \mathscr{P}_{\mathcal{K}} \left(\mathbf{x}^{(t-1)} - \eta \mathbf{h}(\mathbf{x}^{(t-1)}, \mathbf{x}) \right) - \mathbf{x} \right\|_{2} \qquad \blacktriangleright \text{ Definition of projection} \\ &\leq 2 \max \left\{ \phi, \frac{2}{\phi} \| \mathbf{x}^{(t-1)} - \mathbf{x} - \eta \mathbf{h}(\mathbf{x}^{(t-1)}, \mathbf{x}) \|_{\mathcal{K}_{(\phi)}^{\circ}} \right\} \qquad (\forall \phi > 0) \end{aligned}$$

$$(24)$$

▶ Property of projection onto star-shaped set [Corollary 8.3, PVY17]

$$\leq 2 \max \left\{ \phi, 2\mu_1 \| \mathbf{x}^{(t-1)} - \mathbf{x} \|_2 + 2\sqrt{\mu_2 \| \mathbf{x}^{(t-1)} - \mathbf{x} \|_2} + 2\mu_3 \right\} \quad \blacktriangleright \text{ RAIC}$$

$$\leq 4\mu_1 \| \mathbf{x}^{(t-1)} - \mathbf{x} \|_2 + 4\sqrt{\mu_2 \| \mathbf{x}^{(t-1)} - \mathbf{x} \|_2} + 4\mu_3 \quad \blacktriangleright \text{ if } \phi \leq \mu_3$$
(25)

Trade-off in choosing ϕ **:** we use $\phi = \tilde{\Theta}(\mu_3)$

ł

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
	0000000	000000000€0	000000000000000000000000000000000000	000000
RAIC - Parameters μ_i				

$$\|\mathbf{x}^{(t)} - \mathbf{x}\|_{2} \le 4\mu_{1} \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2} + 4\sqrt{\mu_{2} \|\mathbf{x}^{(t-1)} - \mathbf{x}\|_{2}} + 4\mu_{3}$$
(26)

• μ_2 and μ_3 : convergence error of PGD

- (26) \longrightarrow convergence to an ℓ_2 -error of $O(\mu_2 + \mu_3)$
- μ_1 : convergence rate of PGD
- $0 \ll \mu_1 \le \frac{1}{4}$: linear convergence, $O(\log(\epsilon^{-1}))$ steps
- $\mu_1 = 0$: quadratic convergence, $O(\log \log(\epsilon^{-1}))$ steps

43 / 69

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	0000000000●	000000000000000000000000000000000000	000000
RAIC - Parameters μ_i				

- μ_4 : initialization required by PGD
- Eq. (24) \rightarrow Eq. (25) requires $\|\mathbf{x}^{(t-1)} \mathbf{x}\|_2 \le \mu_4$, so we need $\|\mathbf{x}^{(0)} \mathbf{x}\|_2 \le \mu_4$
- μ_4 = diameter of $\mathscr{X} \longrightarrow$ global RAIC, starts with arbitrary point in the signal set
- $\mu_4 \ll \text{diameter of } \mathcal{X} \longrightarrow \text{local RAIC}$, starts with a good initialization $\|\mathbf{x}^{(0)} \mathbf{x}\|_2 \le \mu_4$

HDM 00000C

Quantized CS

2 HDM

3 PGD and RAIC

4 Prove RAIC

6 Conclusions

イロト イポト イヨト イヨト

æ

Main Theorem (Informal):

If

$$m \ge C_2(\Delta \lor \Lambda) \left(\frac{\omega^2(\mathscr{K}_{(r)})}{r^3} + \frac{\log \mathscr{N}(\mathscr{X}, r/2)}{r} \right), \tag{27}$$

then $\|\hat{\mathbf{x}}_{\text{pgd}} - \mathbf{x}\|_2 = \tilde{O}(r)$

What Remains?

Prove RAIC:

$$\frac{1}{r} \left\| \mathbf{u} - \mathbf{v} - \eta \cdot \mathbf{h}(\mathbf{u}, \mathbf{v}) \right\|_{\mathcal{K}_{(r)}^{\circ}} \le \varepsilon \left\| \mathbf{u} - \mathbf{v} \right\|_{2} + \sqrt{\tilde{O}(r) \left\| \mathbf{u} - \mathbf{v} \right\|_{2}} + \tilde{O}(r)$$
(28)

for all $\mathbf{u}, \mathbf{v} \in \mathcal{X}$ satisfying $\|\mathbf{u} - \mathbf{v}\|_2 \le \mu_4$, under the sample complexity (27)

46 / 69

HDM 00000 PGD and RAIC 00000000000000 Conclusions 000000

Gradient

Recall:

$$\begin{aligned} \mathbf{h}(\mathbf{u},\mathbf{v}) &:= \frac{1}{m} \sum_{i=1}^{m} \left(Q(\mathbf{a}_{i}^{\top} \mathbf{u} - \tau_{i}) - Q(\mathbf{a}_{i}^{\top} \mathbf{v} - \tau_{i}) \right) \mathbf{a}_{i} \\ &= \frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}(\mathbf{a}_{i}^{\top} (\mathbf{u} - \mathbf{v})) \left| Q(\mathbf{a}_{i}^{\top} \mathbf{u} - \tau_{i}) - Q(\mathbf{a}_{i}^{\top} \mathbf{v} - \tau_{i}) \right| \mathbf{a}_{i} \end{aligned}$$

► Q is increasing

$$= \frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{u}, \mathbf{v}}} \operatorname{sign}(\mathbf{a}_i^{\top}(\mathbf{u} - \mathbf{v})) \left| Q(\mathbf{a}_i^{\top}\mathbf{u} - \tau_i) - Q(\mathbf{a}_i^{\top}\mathbf{v} - \tau_i) \right| \mathbf{a}_i$$

•
$$\mathbf{R}_{\mathbf{u},\mathbf{v}} := \left\{ i \in [m] : Q(\mathbf{a}_i^\top \mathbf{u} - \tau_i) \neq Q(\mathbf{a}_i^\top \mathbf{v} - \tau_i) \right\}$$

h(u,v) only contains $|R_{u,v}|$ summands!

イロト イポト イヨト イヨト

æ

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	000000
Gradient Clipping				

$$\mathbf{h}(\mathbf{u}, \mathbf{v}) = \frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{u}, \mathbf{v}}} \operatorname{sign}(\mathbf{a}_i^{\top}(\mathbf{u} - \mathbf{v})) \left| Q(\mathbf{a}_i^{\top}\mathbf{u} - \tau_i) - Q(\mathbf{a}_i^{\top}\mathbf{v} - \tau_i) \right| \mathbf{a}_i$$

• One-bit case: if $i \in \mathbf{R}_{\mathbf{u},\mathbf{v}}$, then $|Q(\mathbf{a}_i^\top \mathbf{u} - \tau_i) - Q(\mathbf{a}_i^\top \mathbf{v} - \tau_i)| = \Delta$ and hence

$$\mathbf{h}(\mathbf{u},\mathbf{v}) = \frac{\Delta}{m} \sum_{i \in \mathbf{R}_{\mathbf{u},\mathbf{v}}} \operatorname{sign}(\mathbf{a}_i^{\top}(\mathbf{u} - \mathbf{v})) \mathbf{a}_i.$$
(29)

• Multi-bit case: if $i \in \mathbf{R}_{\mathbf{u},\mathbf{v}}$, all the following are possible

$$|Q(\mathbf{a}_i^{\top}\mathbf{u} - \tau_i) - Q(\mathbf{a}_i^{\top}\mathbf{v} - \tau_i)| = \underbrace{\Delta, 2\Delta, \cdots, \ell\Delta}_{\Delta}$$

add to difficulty forbid unified analysis

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	000000
Gradient Clipping				

• We propose to clip **h**(**u**, **v**) to

$$\hat{\mathbf{h}}(\mathbf{u}, \mathbf{v}) := \frac{\Delta}{m} \sum_{i \in \mathbf{R}_{\mathbf{u}, \mathbf{v}}} \operatorname{sign}(\mathbf{a}_i^{\top}(\mathbf{u} - \mathbf{v})) \mathbf{a}_i$$
(30)

and seek to prove

$$\frac{1}{r} \left\| \mathbf{u} - \mathbf{v} - \eta \cdot \hat{\mathbf{h}}(\mathbf{u}, \mathbf{v}) \right\|_{\mathcal{K}_{(r)}^{\circ}} \le \epsilon \| \mathbf{u} - \mathbf{v} \|_{2} + \sqrt{\tilde{O}(r)} \| \mathbf{u} - \mathbf{v} \|_{2} + \tilde{O}(r), \forall \mathbf{u}, \mathbf{v} \in \mathcal{X}, \| \mathbf{u} - \mathbf{v} \|_{2} \le \mu_{4}.$$
(31)

- One-bit case: No issue
- Multi-bit case: deviation $\longrightarrow \frac{\eta}{r} \| \mathbf{h}(\mathbf{u}, \mathbf{v}) \hat{\mathbf{h}}(\mathbf{u}, \mathbf{v}) \|_{\mathcal{K}_{(r)}^{\circ}}$ where

$$\mathbf{h}(\mathbf{u},\mathbf{v}) - \hat{\mathbf{h}}(\mathbf{u},\mathbf{v}) = \frac{1}{m} \sum_{i \in \mathbf{R}_{\mathbf{u},\mathbf{v}}} \operatorname{sign}(\mathbf{a}_i^{\top}(\mathbf{u} - \mathbf{v})) \underbrace{\left[|Q(\mathbf{a}_i^{\top}\mathbf{u} - \tau_i) - Q(\mathbf{a}_i^{\top}\mathbf{v} - \tau_i)| - \Delta \right]}_{:=D_1} \mathbf{a}_i \qquad (32)$$

- Idea: set $\mu_4 = c' \Delta$ with very small c', restrict the attention to $\|\mathbf{u} \mathbf{v}\|_2 \le c' \Delta$
- $\mathbb{P}(D_1 \neq 0, i \in \mathbf{R}_{\mathbf{u}, \mathbf{v}})$ is very small!

Quantized CS

HDM

1

PGD and RAIC

Covering Argument

- Goal: bound $\frac{1}{r} \|\mathbf{u} \mathbf{v} \eta \cdot \hat{\mathbf{h}}(\mathbf{u}, \mathbf{v})\|_{\mathcal{K}_{(r)}^{\circ}}$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{X}$, $\|\mathbf{u} \mathbf{v}\|_2 \le \mu_4$
- let \mathcal{N}_r be a minimal *r*-net $(r \le \frac{\mu_4}{2})$ of \mathscr{X} such that $|\mathcal{N}_r| = \mathscr{N}(\mathscr{X}, r)$. Then, for any $\mathbf{u}, \mathbf{v} \in \mathscr{X}$ obeying $\|\mathbf{u} \mathbf{v}\|_2 \le \mu_4$, we find their closest points in \mathcal{N}_r :

$$\mathbf{u}_1 := \arg\min_{\mathbf{w}\in\mathcal{N}_r} \|\mathbf{w} - \mathbf{u}\|_2 \text{ and } \mathbf{v}_1 := \arg\min_{\mathbf{w}\in\mathcal{N}_r} \|\mathbf{w} - \mathbf{v}\|_2.$$
(33)

Passing to the net:

$$\overset{r^{-1} \|\mathbf{u} - \mathbf{v} - \eta \cdot \hat{\mathbf{h}}(\mathbf{u}, \mathbf{v})\|_{\mathscr{K}_{(r)}^{\circ}}}{\underset{\text{bound on finite net}}{\underbrace{ = \underbrace{\frac{r^{-1} \|\mathbf{u}_{1} - \mathbf{v}_{1} - \eta \cdot \hat{\mathbf{h}}(\mathbf{u}_{1}, \mathbf{v}_{1})\|_{\mathscr{K}_{(r)}^{\circ}}}_{\text{approximation gap}} + \underbrace{\frac{r^{-1} \|\mathbf{u} - \mathbf{u}_{1}\|_{\mathscr{K}_{(r)}^{\circ}}}{\overset{\leq 2r}{\underbrace{ = \underbrace{r^{-1} \|\mathbf{v} - \mathbf{v}_{1}\|_{\mathscr{K}_{(r)}^{\circ}}}_{\leq 2r}}}_{}$$

イロト イポト イヨト イヨト

æ

- Bound $\frac{\eta}{r} \left(\| \hat{\mathbf{h}}(\mathbf{u}_1, \mathbf{v}_1) \hat{\mathbf{h}}(\mathbf{u}, \mathbf{v}) \|_{\mathcal{K}_{(r)}^{\circ}} \right)$ for all (\mathbf{u}, \mathbf{v}) and corresponding $(\mathbf{u}_1, \mathbf{v}_1)$
- Recall: h(p,q) contains only $|R_{p,q}|$ summands.
- · Reducing number of nonzero contributors:

$$\underbrace{\hat{h}(u_1,v_1)}_{|R_{u_1,v_1}|} - \underbrace{\hat{h}(u,v)}_{|R_{u,v}|} \approx h(u_1,v_1) - h(u,v) = h(u_1,u) + h(v,v_1) \approx \underbrace{\hat{h}(u_1,u)}_{|R_{u_1,u}|} + \underbrace{\hat{h}(v,v_1)}_{|R_{v,v_1}|}$$

• Stronger closeness: $\|\mathbf{u} - \mathbf{v}\|_2 \le \mu_4$, $\|\mathbf{u}_1 - \mathbf{v}_1\|_2 \le 2\mu_4 \longrightarrow \|\mathbf{u} - \mathbf{u}_1\|_2 \le r$, $\|\mathbf{v} - \mathbf{v}_1\|_2 \le r$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

000000000000000000000000000000000000000	0000000	000000000000	000000000000000000000000000000000000000	
Approximation Gap				

- Very few nonzero contributors: $|\mathbf{R}_{\mathbf{u}_1,\mathbf{u}}| + |\mathbf{R}_{\mathbf{v},\mathbf{v}_1}| = \tilde{O}(\frac{mr}{\Delta \vee \Lambda})$ by *quantized embedding property* (small to small)

Crude argument suffices:

$$\frac{\eta}{r} \| \hat{\mathbf{h}}(\mathbf{u}_{1}, \mathbf{u}) \|_{\mathcal{X}_{(r)}^{\circ}}$$

$$= \sup_{\mathbf{w} \in \mathcal{X}_{(r)}} \frac{\Delta \eta}{mr} \sum_{i \in \mathbf{R}_{\mathbf{u}_{1}, \mathbf{u}}} \operatorname{sign}(\mathbf{a}_{i}^{\top}(\mathbf{u}_{1} - \mathbf{u})) \mathbf{a}_{i}^{\top} \mathbf{w}$$

$$\leq \sup_{\mathbf{w} \in \mathcal{X}_{(r)}} \frac{\Delta \eta}{mr} \max_{\substack{I \subset [m] \\ |I| = \tilde{O}(\frac{mr}{\Delta \vee \Lambda})} \sum_{i \in I} |\mathbf{a}_{i}^{\top} \mathbf{w}|$$

$$\blacktriangleright \text{ by triangle inquality and } |\mathbf{R}_{\mathbf{u}_{1}, \mathbf{u}}| = \tilde{O}\left(\frac{mr}{\Delta \vee \Lambda}\right)$$

$$= \frac{\Delta \eta}{\Delta \vee \Lambda} \tilde{O}(r) = \tilde{O}(r)$$

HDM 000000 PGD and RAIC 00000000000 Conclusions 000000

Bound on Finite Net - Orthogonal Decomposition

- Bound $\frac{1}{r} \|\mathbf{p} \mathbf{q} \eta \cdot \hat{\mathbf{h}}(\mathbf{p}, \mathbf{q})\|_{\mathcal{K}_{(r)}^{\circ}}$ for all $\mathbf{p}, \mathbf{q} \in \mathcal{N}_r$ satisfying $\|\mathbf{p} \mathbf{q}\|_2 \le 2\mu_4$
- Find $\left(\boldsymbol{\beta}_1 := \frac{\mathbf{p}-\mathbf{q}}{\|\mathbf{p}-\mathbf{q}\|_2}, \, \boldsymbol{\beta}_2 \right)$ as orthonormal basis in span(\mathbf{p}, \mathbf{q}) such that

$$\mathbf{p} = u_1 \boldsymbol{\beta}_1 + u_2 \boldsymbol{\beta}_2 \text{ and } \mathbf{q} = v_1 \boldsymbol{\beta}_1 + u_2 \boldsymbol{\beta}_2$$
 (34)

for some coordinates (u_1, u_2, v_1)

• Decompose $\hat{\mathbf{h}}(\mathbf{p}, \mathbf{q})$ along three directions: $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \{\text{span}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)\}^{\perp}$

$$\hat{\mathbf{h}}(\mathbf{p},\mathbf{q}) = \langle \hat{\mathbf{h}}(\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_1 \rangle \boldsymbol{\beta}_1 + \langle \hat{\mathbf{h}}(\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_2 \rangle \boldsymbol{\beta}_2 + [\underbrace{\hat{\mathbf{h}}(\mathbf{p},\mathbf{q}) - \langle \hat{\mathbf{h}}(\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_1 \rangle \boldsymbol{\beta}_1 - \langle \hat{\mathbf{h}}, (\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_2 \rangle \boldsymbol{\beta}_2}_{:= \hat{\mathbf{h}}^{\perp}(\mathbf{p},\mathbf{q})}$$

• Substituting into $\frac{1}{r} \|\mathbf{p} - \mathbf{q} - \eta \hat{\mathbf{h}}(\mathbf{p}, \mathbf{q})\|_{\mathcal{K}_{(r)}^{\circ}}$:

$$\frac{1}{r} \|\mathbf{p} - \mathbf{q} - \eta \cdot \hat{\mathbf{h}}(\mathbf{p}, \mathbf{q})\|_{\mathcal{K}_{(r)}^{\circ}} \leq \|\|\mathbf{p} - \mathbf{q}\|_{2} - \underbrace{\eta \cdot \langle \hat{\mathbf{h}}(\mathbf{p}, \mathbf{q}), \boldsymbol{\beta}_{1} \rangle}_{:=T_{1}^{\mathbf{p}, \mathbf{q}}} + |\underbrace{\eta \cdot \langle \hat{\mathbf{h}}(\mathbf{p}, \mathbf{q}), \boldsymbol{\beta}_{2} \rangle}_{:=T_{2}^{\mathbf{p}, \mathbf{q}}} + r^{-1} \cdot \underbrace{\eta \| \hat{\mathbf{h}}^{\perp}(\mathbf{p}, \mathbf{q}) \|_{\mathcal{K}_{(r)}^{\circ}}}_{:=T_{3}^{\mathbf{p}, \mathbf{q}}} \leq \|\|\mathbf{p} - \mathbf{q}\|_{2} - T_{1}^{\mathbf{p}, \mathbf{q}} + |T_{2}^{\mathbf{p}, \mathbf{q}}| + r^{-1} \cdot T_{3}^{\mathbf{p}, \mathbf{q}}. \tag{35}$$

HDM

2GD and RAIC 00000000000000 Conclusions 000000

Bound $|\|\mathbf{p} - \mathbf{q}\|_2 - T_1^{\mathbf{p},\mathbf{q}}|$

$$T_{1}^{\mathbf{p},\mathbf{q}} := \eta \cdot \langle \hat{\mathbf{h}}(\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_{1} \rangle = \frac{\eta \Delta}{m} \sum_{i=1}^{m} |\mathbf{a}_{i}^{\top} \boldsymbol{\beta}_{1}| \mathbb{1}(E_{\mathbf{p},\mathbf{q}}^{(i)})$$

Assumption 4: Moment Bound I

For $\mathbf{p}, \mathbf{q} \in \mathcal{X}$ satisfying $\|\mathbf{p} - \mathbf{q}\|_2 \le 2\mu_4$, we suppose

$$\mathbb{E}\left(|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{\left(i\right)}\right)\right) \leq c^{(5)}\mathsf{P}_{\mathbf{p},\mathbf{q}}\cdot\frac{p!}{2}, \quad \forall p \geq 2$$
(36a)

$$\mathbb{E}\left(|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}|\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right)\approx\frac{c^{(6)}\|\mathbf{p}-\mathbf{q}\|_{2}}{\Delta\vee\Lambda},$$
(36b)

hold for some $c^{(5)}, c^{(6)} > 0$

Bernstein's inequality (under $\eta = \frac{\Delta \vee \Lambda}{\Delta c^{(6)}}$):

$$\begin{aligned} \|\|\mathbf{p}-\mathbf{q}\|_{2} - T_{1}^{\mathbf{p},\mathbf{q}}\| &\lesssim \sqrt{\frac{[\Delta \vee \Lambda]\log(\mathscr{N}(\mathscr{X},r))\|\mathbf{p}-\mathbf{q}\|_{2}}{m}} + \frac{[\Delta \vee \Lambda]\log(\mathscr{N}(\mathscr{X},r))}{m} \\ &\stackrel{(27)}{\leq} \sqrt{O(r)\|\mathbf{p}-\mathbf{q}\|_{2}} + O(r) \end{aligned}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Bound $|T_2^{\mathbf{p},\mathbf{q}}|$

HDM

PGD and RAIC 00000000000 Conclusions

$$T_{2}^{\mathbf{p},\mathbf{q}} := \eta \cdot \langle \hat{\mathbf{h}}(\mathbf{p},\mathbf{q}), \boldsymbol{\beta}_{2} \rangle = \frac{\eta \Delta}{m} \sum_{i=1}^{m} \operatorname{sign}(\mathbf{a}_{i}^{\top} \boldsymbol{\beta}_{1}) (\mathbf{a}_{i}^{\top} \boldsymbol{\beta}_{2}) \mathbb{1} (E_{\mathbf{p},\mathbf{q}}^{(i)}),$$

Assumption 5: Moment Bound II

For any $\mathbf{p}, \mathbf{q} \in \mathcal{X}$ obeying $0 < \|\mathbf{p} - \mathbf{q}\|_2 \le 2\mu_4$, we suppose

$$\mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{2}\right|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{\left(i\right)}\right)\right| \leq c^{\left(7\right)}\mathsf{P}_{\mathbf{p},\mathbf{q}}\cdot\frac{p!}{2}, \quad \forall p \geq 2$$
(37a)

$$\mathbb{E}\left(\operatorname{sign}(\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1})\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{2}\mathbb{1}(E_{\mathbf{p},\mathbf{q}}^{(l)})\right)\approx0,\tag{37b}$$

hold for some $c^{(7)} > 0$

Bernstein's inequality:

$$|T_{2}^{\mathbf{p},\mathbf{q}}| \lesssim \sqrt{\frac{[\Delta \vee \Lambda]\log(\mathscr{N}(\mathscr{X},r))\|\mathbf{p}-\mathbf{q}\|_{2}}{m}} + \frac{[\Delta \vee \Lambda]\log(\mathscr{N}(\mathscr{X},r))}{m}$$

$$\stackrel{(27)}{\leq} \sqrt{O(r)\|\mathbf{p}-\mathbf{q}\|_{2}} + O(r)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	000000
Bound $r^{-1}T_3^{\mathbf{p},\mathbf{q}}$				

$$T_{3}^{\mathbf{p},\mathbf{q}} := \sup_{\mathbf{w}\in\mathcal{K}_{(r)}} \eta \cdot \mathbf{w}^{\top} \hat{\mathbf{h}}^{\perp}(\mathbf{p},\mathbf{q}) = \sup_{\mathbf{w}\in\mathcal{K}_{(r)}} \frac{\eta \Delta}{m} \sum_{i=1}^{m} \underbrace{\operatorname{sign}(\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}) \left[\mathbf{a}_{i} - (\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1})\boldsymbol{\beta}_{1} - (\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{2})\boldsymbol{\beta}_{2}\right]^{\top} \mathbf{w}}_{:=I_{i,\mathbf{w}}^{\mathbf{p},\mathbf{q}}} \cdot \mathbb{I}(E_{\mathbf{p},\mathbf{q}}^{(i)}).$$

Assumption 6: Moment Bound III

For any $\mathbf{w} \in \mathbb{R}^n$ and any $\mathbf{p}, \mathbf{q} \in \mathcal{X}$ obeying $0 < \|\mathbf{p} - \mathbf{q}\|_2 \le 2\mu_4$, we suppose

$$\mathbb{E}\left[|J_{i,\mathbf{w}}^{\mathbf{p},\mathbf{q}}|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right] \le \mathsf{P}_{\mathbf{p},\mathbf{q}}\left(c^{(8)}\sqrt{p}\right)^{p}, \quad \forall p \ge 2, \ \forall \mathbf{w} \in \mathbb{S}^{n-1}$$
(38a)

$$\mathbb{E}\left(J_{i,\mathbf{w}}^{\mathbf{p},\mathbf{q}}\,\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right)\approx0,\ \forall\mathbf{w}\in\mathbb{S}^{n-1}\tag{38b}$$

hold for some $c^{(8)} > 0$, $\varepsilon^{(4)} \ge 0$.

ヘロト 人間 トイヨト イヨト

Bound $r^{-1}T_2^{\mathbf{p},\mathbf{q}}$

HDM

PGD and RAIC 000000000000

$T_3^{\mathbf{p},\mathbf{q}} = \sup_{\mathbf{w}\in\mathcal{K}_{(r)}} \frac{\eta\Delta}{m} \sum_{i\in\mathbf{R}_{\mathbf{p},\mathbf{q}}} J_{i,\mathbf{w}}^{\mathbf{p},\mathbf{q}}$

Conditional Concentration: (similar to [MM24])

• We condition on $|\mathbf{R}_{\mathbf{p},\mathbf{q}}| = r_{\mathbf{p},\mathbf{q}}$, then

$$T_{3}^{\mathbf{p},\mathbf{q}} \sim \sup_{\mathbf{w} \in \mathcal{K}_{(r)}} \frac{\eta \Delta}{m} \sum_{i=1}^{r_{\mathbf{p},\mathbf{q}}} \hat{J}_{i}(\mathbf{w}), \quad \hat{J}_{i}(\mathbf{w}) \stackrel{iid}{\sim} J_{i,\mathbf{w}}^{\mathbf{p},\mathbf{q}} | \{E_{\mathbf{p},\mathbf{q}}^{(i)}\}$$

• Moment bound in Assumption 7 states $\|\hat{J}_i(\mathbf{w})\|_{\psi_2} = O(c^{(8)})$, so we use Talagrand's and capture $\omega(\mathcal{K}_{(r)})$

Chernoff Inequality:

• It is easy to get rid of the conditioning: $r_{\mathbf{p},\mathbf{q}} \sim Bin(m, \mathsf{P}_{\mathbf{p},\mathbf{q}})$

Final bound:

$$r^{-1}T_{3}^{\mathbf{p},\mathbf{q}} \lesssim \sqrt{\frac{\|\mathbf{p}-\mathbf{q}\|_{2}[\Delta \vee \Lambda][\frac{\omega^{2}(\mathscr{K}(r))}{r^{2}} + \log\mathscr{N}(\mathscr{X}, r)]}{m}} + \frac{[\Delta \vee \Lambda][\frac{\omega^{2}(\mathscr{K}(r))}{r^{2}} + \log\mathscr{N}(\mathscr{X}, r)]}{m}$$

$$\stackrel{(27)}{\leq} \sqrt{O(r)\|\mathbf{p}-\mathbf{q}\|_{2}} + O(r)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Combining all the pieces:

$$\begin{split} &\frac{\eta}{r} \Big(\| \hat{\mathbf{h}}(\mathbf{u}_1, \mathbf{u}) \|_{\mathcal{K}_{(r)}^{\circ}} + \| \hat{\mathbf{h}}(\mathbf{v}, \mathbf{v}_1) \|_{\mathcal{K}_{(r)}^{\circ}} \Big) = \tilde{O}(r) \\ & \| \| \mathbf{p} - \mathbf{q} \|_2 - T_1^{\mathbf{p}, \mathbf{q}} \| \le \sqrt{O(r) \| \mathbf{p} - \mathbf{q} \|_2} + O(r) \\ & \| T_2^{\mathbf{p}, \mathbf{q}} \| \le \sqrt{O(r) \| \mathbf{p} - \mathbf{q} \|_2} + O(r) \\ & r^{-1} T_3^{\mathbf{p}, \mathbf{q}} \le \sqrt{O(r) \| \mathbf{p} - \mathbf{q} \|_2} + O(r) \end{split}$$

the desired RAIC follows!

イロト イポト イヨト イヨト

æ

Understanding the Moment Bound (Vague)

Moment bounds in Assumption 5:

$$\mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{\left(i\right)}\right)\right| \leq c^{(5)}\mathsf{P}_{\mathbf{p},\mathbf{q}}\cdot\frac{p!}{2}, \quad \forall p \geq 2$$

$$(39)$$

Kind of "*independence*" between $\mathbf{a}_i^{\top} \boldsymbol{\beta}_1$ and $E_{\mathbf{p},\mathbf{q}}^{(i)}$:

Cauchy-Schwarz gives

$$\mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right) \leq \sqrt{\mathbb{E}\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{2p}}\sqrt{\mathbb{P}(E_{\mathbf{p},\mathbf{q}}^{(i)})} \leq \frac{c^{(5)}p!}{2}\sqrt{\mathsf{P}_{\mathbf{p},\mathbf{q}}}$$
(40)

but the bound is not strong enough when $\mathsf{P}_{\mathbf{p},\mathbf{q}} = o(1)$ (Cauchy-Schwarz is tight if $|\mathbf{a}_i^\top \boldsymbol{\beta}_1|^p = t \mathbb{1}(E_{\mathbf{p},\mathbf{q}}^{(i)})$ for some t > 0)

• When $\mathbf{a}_i^{\top} \boldsymbol{\beta}_1$ and $E_{\mathbf{p},\mathbf{q}}^{(i)}$ are independent:

$$\mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right) = \mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p}\right)\mathbb{E}\left(\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right) \le \frac{c^{(5)}p!}{2}\mathsf{P}_{\mathbf{p},\mathbf{q}}$$
(41)

we are done!

HDM 0000000 PGD and RAIC 0000000000000 Conclusions

Why Moment Bounds are Satisfied by (D)1bCS & DMbCS?

Moment bound in Assumption 5:

$$\mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right) \leq c^{(5)}\mathsf{P}_{\mathbf{p},\mathbf{q}}\cdot\frac{p!}{2}, \quad \forall p \geq 2$$

where

$$E_{\mathbf{p},\mathbf{q}}^{(i)} = \left\{ Q(\mathbf{a}_i^{\top} \mathbf{p} - \tau_i) \neq Q(\mathbf{a}_i^{\top} \mathbf{q} - \tau_i) \right\}$$
$$= \left\{ Q(u_1 \mathbf{a}_i^{\top} \boldsymbol{\beta}_1 + u_2 \mathbf{a}_i^{\top} \boldsymbol{\beta}_2 - \tau_i) \neq Q(v_1 \mathbf{a}_i^{\top} \boldsymbol{\beta}_1 + u_2 \mathbf{a}_i^{\top} \boldsymbol{\beta}_2 - \tau_i) \right\}$$
(42)

1bCS:
$$\mathbf{a}_i^{\top} \boldsymbol{\beta}_1, \mathbf{a}_i^{\top} \boldsymbol{\beta}_2 \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$

$$\mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{\left(i\right)}\right)\right) = \mathbb{E}\left(\left|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}\right|^{p} \cdot \mathbb{P}_{\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{2}\sim\mathcal{N}\left(0,1\right)}\left[E_{\mathbf{p},\mathbf{q}}^{\left(i\right)}\right]\right)$$
(43)

D1bCS & DMbCS:

$$\mathbb{E}\left(|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}|^{p}\mathbb{1}\left(E_{\mathbf{p},\mathbf{q}}^{(i)}\right)\right) = \mathbb{E}\left(|\mathbf{a}_{i}^{\top}\boldsymbol{\beta}_{1}|^{p} \cdot \mathbb{P}_{\tau_{i} \sim \mathcal{U}\left[-\Lambda,\Lambda\right]}[E_{\mathbf{p},\mathbf{q}}^{(i)}]\right)$$

æ

イロト イポト イヨト イヨト

Quantized CS

2 HDM

- **3** PGD and RAIC
- 4 Prove RAIC
- **5** Conclusions

イロト イポト イヨト イヨト

æ

Concluding Remarks

This Talk:

- · RAIC is useful in other nonconvex optimization problems
- Under sub-Gaussian **A**, the HMD rates only require two essential components small-ball probability and separation probability
- · Under some additional moment bounds, PGD achieves the same rate as HDM
- • Validating these assumptions, the PGD rates improve on or match the best known rates in all instances. $\rm [CY24b]^{22}$

Questions:

- The tightness of $O((\frac{k}{m})^{1/3})$ in recovering signals in $\sqrt{k}\mathbb{B}_1^n$;
- Optimal algorithms in structured sensing matrices;
- Optimal QCS of signals in a generative prior (may not be star-shaped)?

• ...

Thank you for listening

chenjr58@connect.hku.hk https://junrenchen58.github.io/

[PV16] The generalized lasso with non-linear observations. Y. Plan & R. Vershynin, *IEEE Trans. Inf. Theory*, 2016.

[JR72] The application of dither to the quantization of speech signals. N. Jayant, L. Rabiner, *Bell System Technical Journal*, 1972.

[**JLBB13**] Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors. L. Jacques, J. Laska, P. T. Boufounos; R. Baraniuk, *IEEE Trans. Inf. Theory*, 2013.

[OR15] Near-optimal bounds for binary embeddings of arbitrary sets. S. Oymak & B. Recht, ArXiv, 2015.

[**PV14**] Dimension reduction by random hyperplane tessellations, Y. Plan & R. Vershynin, *Discrete & Computational Geometry*, 2014.

[**ALPV14**] One-bit compressed sensing with non-Gaussian measurements, A. Ai, A. Lapanowski, Y. Plan, R. Vershynin, *Linear Algebra and its Applications*, 2014.

(PV13) One-bit compressed sensing by linear programming, Y. Plan & R. Vershynin, *Communications on Pure and Applied Mathematics*, 2013.

[PV12] Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, Y. Plan & R. Vershynin, *IEEE Trans. Inf. Theory*, 2012.

[PVY17] High-dimensional estimation with geometric constraints, Y. Plan, R. Vershynin & E. Yudovina, *Inf. Inference*, 2017.

[CKLG22] Adaboost and robust one-bit compressed sensing, G. Chinot, F. Kuchelmeister, M. Löffler, S. Geer, *Mathematical Statistics and Learning*, 2022.

[**MM24**] Binary iterative hard thresholding converges with optimal number of measurements for 1-bit compressed sensing, N. Matsumoto & A. Mazumdar, *Journal of the ACM*, 2024.

[KSW16] One-bit compressive sensing with norm estimation, K. Knudson, R. Saab, R. Ward, *IEEE Trans. Inf. Theory*, 2016.

[DM21] Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing, S. Dirksen & S. Mendelson, *Journal of the European Mathematical Society*, 2021.

[**TR20**] The generalized lasso for sub-gaussian measurements with dithered quantization, C. Thrampoulidis & A. S. Rawat, *IEEE Trans. Inf. Theory*, 2020.

[XJ20] Quantized compressive sensing with rip matrices: The benefit of dithering, C. Xu & L. Jacques, *Inf. Inference*, 2020.

[CLS15] Phase Retrieval via Wirtinger Flow: Theory and Algorithms, E. Candès, X. Li, M. Soltanolkotabi, *IEEE Trans. Inf. Theory*, 2015.

Quantized CS	HDM	PGD and RAIC	Prove RAIC	Conclusions
000000000000000000000000000000000000	0000000	00000000000	000000000000000000000000000000000000	00000●
References				

[BJKS15] Quantization and Compressive Sensing, P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, *Compressed Sensing and its Applications: MATHEON Workshop*, 2015.

[JMPS21] Quantized Compressed Sensing by Rectified Linear Units, H. C. Jung, J. Maly, L. Palzer, A. Stollenwerk, *IEEE Trans. Inf. Theory*, 2021.

[**CY24a**] One-Bit Phase Retrieval: Optimal Rates and Efficient Algorithms, J. Chen & M. Yuan, Preprint, 2024.

[OS17] Fast and reliable parameter estimation from nonlinear observations, S. Oymak, M. Soltanolkotabi, *SIOPT*, 2017.

[S19] Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization, M. Soltanolkotabi, *IEEE Trans. Inf. Theory*, 2019.

[FJPY21] NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rate, M. P. Friedlander, H. Jeong, Y. Plan, Ö. Ylmaz, IEEE Trans. Inf. Theory, 2021.

[CY24b] Optimal Quantized Compressed Sensing via Projected Gradient Descent, J. Chen & M. Yuan, Preprint, 2024.