Phase Transitions in Phase-Only Compressed Sensing

Junren Chen

Department of Mathematics The University of Hong Kong

with Lexiao Lai (HKU) and Arian Maleki (Columbia)

June 23, 2025

ISIT 2025 Ann Arbor, USA

- 1 Phase-Only CS
- 2 Phase Transition
- 3 Explicit Formula
- 4 Simulations
- 6 Conclusions

Phase-Only CS

- Phase Transition
- 3 Explicit Formula
- 4 Simulations
- Conclusions

Problem Setup

Phase-Only CS

00000000

• Goal: Recover s-sparse signal $\mathbf{x} \in \mathbb{S}^{n-1}$ from $\mathbf{z} = \operatorname{sign}(\mathbf{\Phi}\mathbf{x}), \ \mathbf{\Phi} \in \mathbb{C}^{m \times n}$, i.e.,

$$z_i = \operatorname{sign}(\mathbf{\Phi}_i^* \mathbf{x}), \qquad i \in [m]$$
 (1)

• For $c \in \mathbb{C} \setminus \{0\}$ we have

$$c = |c| \cdot \frac{c}{|c|} = \text{magnitude} \cdot \text{phase}$$
 (2)

• Let sign(c) = $\frac{c}{|c|}$

Phase-Only CS

violivation

- Applications in quantization & robustness.
- · A complex version of one-bit compressed sensing
 - Recover s-sparse $\mathbf{x} \in \mathbb{S}^{n-1}$ from $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x}), \ \mathbf{A} \in \mathbb{R}^{m \times n}$, i.e.,

$$y_i = \operatorname{sign}(\mathbf{a}_i^\top \mathbf{x}), \qquad i \in [m]$$
 (3)

- Optimal error rate $\|\hat{\mathbf{x}} \mathbf{x}\|_2 = \tilde{\Theta}(\frac{s}{m}) [JLBB13]^1$
- · The opposite of phase retrieval
 - Recover \mathbf{x} from $\mathbf{v} = |\mathbf{\Phi}\mathbf{x}|$

ററാക്കാറ്റാറ Prior Work

Phase-Only CS

- · Before 2015: Studied by Boufounos; only showed approximate recovery but numerically observed exact recovery [B13]
- Recently revisited by Jacques and coauthors:
 - A linearization approach achieves exact reconstruction of sparse signals [JF21]²

Linearization Approach [JF21]

Linearization:

Phase-Only CS

000000000

• $z = sign(\Phi x)$ implies

$$\frac{1}{\sqrt{m}}\Im(\operatorname{diag}(\mathbf{z}^*)\mathbf{\Phi})\mathbf{u} = 0 \tag{4}$$

· To specify signal norm we also add

$$\frac{1}{m}\Re(\mathbf{z}^*\mathbf{\Phi})\mathbf{u} = 1. \tag{5}$$

• (5) and (4) can be concisely written as

$$\mathbf{A}_{\mathbf{z}}\mathbf{u} = \mathbf{e}_{1}, \qquad \text{where } \mathbf{A}_{\mathbf{z}} := \begin{bmatrix} \frac{1}{m}\Re(\mathbf{z}^{*}\mathbf{\Phi}) \\ \frac{1}{\sqrt{m}}\Im(\operatorname{diag}(\mathbf{z}^{*})\mathbf{\Phi}) \end{bmatrix} \in \mathbb{R}^{(m+1)\times n}$$
 (6)

Algorithm: Compute $\mathbf{x}^{\sharp} = \frac{\hat{\mathbf{x}}}{\|\hat{\mathbf{x}}\|_2}$ where

$$\hat{\mathbf{x}} = \arg\min f(\mathbf{u}) = \|\mathbf{u}\|_1, \quad \text{subject to } \mathbf{A}_{\mathbf{z}}\mathbf{u} = \mathbf{e}_1$$
 (7)

Az Satisfies RIP

Phase-Only CS

000000000

- Φ has iid $\mathcal{N}(0,1) + \mathcal{N}(0,1)$ i entries
- Fix $\mathbf{x} \in \mathbb{S}^{n-1}$. For cone \mathcal{K} , we have $\mathbf{A}_{\mathbf{z}} \sim \text{RIP}(\mathcal{K}, \delta)$, i.e.,

$$\|\mathbf{A}_{\mathbf{Z}}\mathbf{u}\|_{2}^{2} - \|\mathbf{u}\|_{2}^{2} \| \leq \delta \|\mathbf{u}\|_{2}^{2}, \quad \forall \mathbf{u} \in \mathcal{K}.$$
 (8)

w.h.p. if $m \ge C\delta^{-2}\omega^2((\mathcal{K} - \mathbb{R}\mathbf{x}) \cap \mathbb{S}^{n-1})$ [JF21].

• Sparse recovery: When $m = O(s \log \frac{en}{s})$, then $A_{\mathbf{z}} \sim \text{RIP}(\Sigma_{2s}^{n}, \frac{1}{3})$, and hence under $f(\mathbf{u}) = \|\mathbf{u}\|_1, \ \mathbf{x}^{\sharp} = \mathbf{x} \ \text{w.h.p.}$

Question 1: Phase Transition

What is the precise number of measurements $\zeta_{PO}(\mathbf{x}; f)$ needed for achieving $\mathbf{x}^{\sharp} = \mathbf{x}$?

A Conjecture in [JF21]

Phase-Only CS

000000000

• We let $\zeta_{I,N}(\mathbf{x};f)$ be the phase transition location of recovering \mathbf{x} from $\mathbf{y} = \mathbf{A}\mathbf{x}$ $(\mathbf{A} \sim \mathcal{N}^{m \times n}(0,1))$ via

min
$$f(\mathbf{u}) (= \|\mathbf{u}\|_1)$$
, subject to $A\mathbf{u} = \mathbf{y}$.

- $\zeta_{LN}(\mathbf{x};f) = \delta(T_f(\mathbf{x})) [ALMT14]^3$
 - $\delta(\mathcal{K})$ is the statistical dimension of cone \mathcal{K} ;
 - $T_f(\mathbf{x}) = \{\mathbf{u} \in \mathbb{R}^n : \exists t > 0 \text{ s.t. } f(\mathbf{x} + t\mathbf{u}) \le f(\mathbf{x})\}$: descent cone of f at \mathbf{x}
- A Conjecture [JF21]: $\zeta_{PO}(\mathbf{x}; f) \approx \zeta_{LN}(\mathbf{x}; f)$

Question 2: The Conjecture

Can we rigorously prove or disprove $\zeta_{PO} \approx \zeta_{LN}$?

 $^{^3}$ Living on the edge: Phase transitions in convex programs with random data. D. Amelunxen, M. Lotz, M. McCoy, J. Tropp, Inf. & Inference, 2014. ←□ > ←□ > ← ≥ > ← ≥ >

Our Contributions

Phase-Only CS

ററററററ്റെറ

We show

$$\zeta_{\text{PO}}(\mathbf{x}; f) = \left[\mathbb{E} \sup_{\mathbf{u} \in T_f(\mathbf{x}) \\ \|\mathbf{O}_{\mathbf{u}}\|_{0=1}} \langle (\mathbf{I}_n - \mathbf{x} \mathbf{x}^\top) \mathbf{g}, \mathbf{u} \rangle \right]^2$$
(9)

- $T_f(\mathbf{x}) = \{\mathbf{u} \in \mathbb{R}^n : \exists t > 0 \text{ s.t. } f(\mathbf{x} + t\mathbf{u}) \le f(\mathbf{x})\}: \text{ descent cone of } f \text{ at } \mathbf{x}$
- $\mathbf{Q}_{\mathbf{x}} = \mathbf{I}_n + (\sqrt{\frac{\pi}{2}} 1)\mathbf{x}\mathbf{x}^{\top}$, hence $\mathbf{Q}_{\mathbf{x}}^{-1} = \mathbf{I}_n (1 \sqrt{2/\pi})\mathbf{x}\mathbf{x}^{\top}$
- We derive explicit formula for $\zeta_{PO}(\mathbf{x}; \|\cdot\|_1)$

Phase-Only CS

000000000

- We disprove the conjecture and show that $\frac{\zeta_{PO}}{\zeta_{LN}} \leq 1$ is bounded away from 1 in the sparse case
- E.g., $\zeta_{PO}(\mathbf{x}; \ell_1) < 0.75 \cdot \zeta_{LN}(\mathbf{x}; \ell_1)$ for 1-sparse $\mathbf{x} \in \mathbb{S}^{999}$.

Figure 1: We fix n=1000 and plot the (approximate) curves of $\zeta_{\rm PO}/\zeta_{\rm LN}$ v.s. s=1:1000 under $\|\mathbf{x}\|_1=\sqrt{s},\ 0.7\sqrt{s}+0.3,\ 0.3\sqrt{s}+0.7.$

- 1 Phase-Only CS
- 2 Phase Transition
- Explicit Formula
- 4 Simulations
- 6 Conclusions

Main Theorem

Theorem 1: Phase Transition Threshold

Suppose that the entries of Φ are i.i.d. $\mathcal{N}(0,1) + \mathcal{N}(0,1)\mathbf{i}$, and consider the recovery of a fixed signal $\mathbf{x} \in \mathbb{S}^{n-1}$ from $\mathbf{z} = \operatorname{sign}(\mathbf{\Phi}\mathbf{x})$. Define

$$\zeta_{\text{PO}}(\mathbf{x}; f) = \begin{bmatrix} \mathbb{E} \sup_{\mathbf{u} \in T_f(\mathbf{x}) \\ \|\mathbf{Q}_{\mathbf{x}}\mathbf{u}\|_2 = 1} \langle (\mathbf{I}_n - \mathbf{x}\mathbf{x}^\top)\mathbf{g}, \mathbf{u} \rangle \end{bmatrix}^2$$
(10)

There exists an absolute constant c, such that for any $t \in [\frac{17}{m}, c]$, we have:

• If $m \ge (1+t) \cdot \zeta_{PO}(\mathbf{x}; f)$, then

$$\mathbb{P}\left(\mathbf{x}^{\sharp} = \mathbf{x}\right) \ge 1 - 14 \exp\left(-\frac{mt^2}{289}\right);$$

• If $m \le (1-t) \cdot \zeta_{PO}(\mathbf{x}; f)$, then

$$\mathbb{P}\left(\mathbf{x}^{\sharp} \neq \mathbf{x}\right) \ge 1 - 14 \exp\left(-\frac{mt^2}{289}\right),\,$$

where $\zeta_{PO}(\mathbf{x};f)$ is the quantity defined in (9).

Conditions for Success and Failure

We first identify the conditions for success $(\mathbf{x}^{\sharp} = \mathbf{x})$ and failure $(\mathbf{x}^{\sharp} \neq \mathbf{x})$.

Lemma 1: Conditions for success and failure

For a fixed $\mathbf{x} \in \mathbb{S}^{n-1}$, suppose that $\|\mathbf{\Phi}\mathbf{x}\|_1 > 0$. Let $f(\cdot)$ denote a norm in \mathbb{R}^n , and assume that $T_f(\mathbf{x})$ is closed and not a subspace. Then the following two statements are correct:

• We have $\mathbf{x}^{\sharp} = \mathbf{x}$ if

$$\min_{\mathbf{u} \in T_f^*(\mathbf{x})} \max_{\mathbf{v} \in \mathbb{S}^m} \mathbf{v}^{\mathsf{T}} \mathbf{A}_{\mathbf{z}} \mathbf{u} > 0. \tag{11}$$

We have x[#] ≠ x if

$$\min_{\mathbf{v} \in \mathbb{S}^{m}} \max_{\mathbf{u} \in T_{f}^{*}(\mathbf{x})} \mathbf{v}^{\mathsf{T}} \mathbf{A}_{\mathbf{z}} \mathbf{u} > 0. \tag{12}$$

Gaussian Min-Max Theorem

Lemma 2: Gaussian min-max theorem

We let $\mathbf{G} \in \mathbb{R}^{m \times (n-1)}$, $\mathbf{g} \in \mathbb{R}^m$, $\mathbf{h} \in \mathbb{R}^{n-1}$, $S_{\mathbf{w}} \subset \mathbb{R}^n$, $S_{\mathbf{u}} \subset \mathbb{R}^m$, $\psi : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, $\mathbf{w} = (w_1, \tilde{\mathbf{w}}^\top)^\top \in S_{\mathbf{w}}$ with $\tilde{\mathbf{w}} \in \mathbb{R}^{n-1}$, and define

$$\Gamma(\mathbf{G}) := \min_{\mathbf{w} \in S_{\mathbf{W}}} \max_{\mathbf{u} \in S_{\mathbf{H}}} \mathbf{u}^{\top} \mathbf{G} \tilde{\mathbf{w}} + \psi(\mathbf{w}, \mathbf{u}),$$

$$\Upsilon(\mathbf{g},\mathbf{h}) := \min_{\mathbf{w} \in S_{\mathbf{u}}} \max_{\mathbf{u} \in S_{\mathbf{u}}} \ \|\tilde{\mathbf{w}}\|_2 \mathbf{g}^\top \mathbf{u} + \|\mathbf{u}\|_2 \mathbf{h}^\top \tilde{\mathbf{w}} + \psi(\mathbf{w},\mathbf{u}).$$

Assume that $S_{\mathbf{W}}$ and $S_{\mathbf{H}}$ are compact, ψ is continuous on $S_{\mathbf{W}} \times S_{\mathbf{H}}$, and $\mathbf{G}, \mathbf{g}, \mathbf{h}$ have i.i.d. standard normal entries.

Then for any $c \in \mathbb{R}$ we have

$$\mathbb{P}\left(\Gamma(\mathbf{G}) < c\right) \leq 2\mathbb{P}\left(\Upsilon(\mathbf{g}, \mathbf{h}) \leq c\right), \qquad \text{or} \quad \mathbb{P}\left(\Gamma(\mathbf{G}) \geq c\right) \geq 2\mathbb{P}\left(\Upsilon(\mathbf{g}, \mathbf{h}) > c\right) - 1.$$

We want to use this lemma to simplify the min-max conditions in (11) and (12)

Near Gaussianity of Az

- The issue is that Az is non-Gaussian (otherwise [JF21] becomes trivial...)
- · After a transformation, the non-Gaussianity only occurs in the first column

Lemma 3: Near Gaussianity of Az

Let P_x be an orthogonal matrix whose first row is x^{\top} . Let

$$L = \frac{1}{m} \sum_{i=1}^{m} L_i, \qquad \text{where} \quad \{L_i\}_{i=1}^{m} \overset{iid}{\sim} |\mathcal{N}(0,1) + \mathcal{N}(0,1)\mathbf{i}|,$$

and let $\mathbf{G} \sim \mathcal{N}^{(m+1)\times (n-1)}(0,1)$ be independent of L. Then we have

$$\mathbf{A}_{\mathbf{Z}}\mathbf{P}_{\mathbf{X}}^{\mathsf{T}} \stackrel{d}{=} \begin{bmatrix} L\mathbf{e}_{1} & \frac{\mathbf{G}}{\sqrt{m}} \end{bmatrix}$$

$$= \begin{bmatrix} L & \frac{g_{11}}{\sqrt{m}} & \dots & \frac{g_{1,n-1}}{\sqrt{m}} \\ 0 & \frac{g_{21}}{\sqrt{m}} & \dots & \frac{g_{2,n-1}}{\sqrt{m}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \frac{g_{m+1,1}}{\sqrt{m}} & \dots & \frac{g_{m+1,n-1}}{\sqrt{m}} \end{bmatrix}$$

$$(13)$$

Proof Sketches

Phase-Only CS

Use Gaussian min-max to simplify:

$$\mathbb{P}(\mathbf{x}^{\sharp} = \mathbf{x}) \ge \mathbb{P}\left(\min_{\mathbf{u} \in T_f^*(\mathbf{x})} \max_{\mathbf{v} \in \mathbb{S}^m} \mathbf{v}^{\top} \mathbf{A}_{\mathbf{z}} \mathbf{u} > 0\right)$$

$$\begin{split} &= \mathbb{P}\Big(\min_{\mathbf{u} \in \mathbf{P}_{\mathbf{X}} T_f^*(\mathbf{x})} \max_{\mathbf{v} \in \mathbb{S}^m} \ \mathbf{v}^\top \mathbf{A}_{\mathbf{z}} \mathbf{P}_{\mathbf{x}}^\top \mathbf{u} > 0 \Big) \\ &= \mathbb{P}\Big(\min_{\mathbf{u} \in \mathbf{P}_{\mathbf{X}} T_f^*(\mathbf{x})} \max_{\mathbf{v} \in \mathbb{S}^m} \ \mathbf{v}^\top \left[L \mathbf{e}_1 \quad \frac{\mathbf{G}}{\sqrt{m}} \right] \mathbf{u} > 0 \Big) \end{split}$$

$$= \mathbb{P} \left(\begin{array}{c} \min \\ \min \\ \end{array} \right) = \mathbb{P} \left(\begin{array}{c} \min \\ \end{array} \right)$$

$$= \mathbb{P} \Big(\min_{\mathbf{u} \in \mathbf{P}_{\mathbf{x}} T_f^* (\mathbf{x})} \max_{\mathbf{v} \in \mathbb{S}^m} \sqrt{m} L u_1 v_1 + \mathbf{v}^\top \mathbf{G} \tilde{\mathbf{u}} \ge 0 \Big)$$

$$\geq 2\mathbb{P}\bigg(\min_{\mathbf{u}\in\mathbf{P}_{\mathbf{x}}T_{f}^{*}}(\mathbf{x}\max_{\mathbf{v}\in\mathbb{S}^{m}}\ \|\tilde{\mathbf{u}}\|_{2}\mathbf{g}^{\top}\mathbf{v}+\|\mathbf{v}\|_{2}\mathbf{h}^{\top}\tilde{\mathbf{u}}+\sqrt{m}Lu_{1}v_{1}>\delta\bigg)-1$$

$$=2\mathbb{P}\Big(\min_{\mathbf{u}\in\mathbf{P}_{\mathbf{x}}T_{\varepsilon}^{*}(\mathbf{x})}\mathbf{h}^{\top}\tilde{\mathbf{u}}+\left\|\|\tilde{\mathbf{u}}\|_{2}\mathbf{g}+\sqrt{m}Lu_{1}\mathbf{e}_{1}\right\|_{2}>0\Big)-1$$

$$=2\mathbb{P}\left(\forall \mathbf{u} \in \mathbf{P}_{\mathbf{x}} T_f^*(\mathbf{x}), \ \mathbf{h}^{\top} \tilde{\mathbf{u}} < \left\| \|\tilde{\mathbf{u}}\|_2 \mathbf{g} + \sqrt{m} L u_1 \mathbf{e}_1 \right\|_2 \right) - 1$$

by success condition

▶ by near-Gaussianity

► by
$$\mathbf{u} = (u_1, \tilde{\mathbf{u}}^\top)^\top, \mathbf{v} = (v_1, \tilde{\mathbf{v}}^\top)^\top$$

▶ by Gaussian min-max

▶ by symmetry

by Gaussian concentration

Proof Sketches

Two Concentrations

$$\begin{split} & \mathbb{P}\left(\mathbf{x}^{\sharp} = \mathbf{x}\right) \geq 2\mathbb{P}\left(\forall \mathbf{u} \in \mathbf{P}_{\mathbf{x}} T_{f}^{*}\left(\mathbf{x}\right), \ \mathbf{h}^{\top} \tilde{\mathbf{u}} < \left\|\|\tilde{\mathbf{u}}\|_{2}\mathbf{g} + \sqrt{m}Lu_{1}\mathbf{e}_{1}\right\|_{2}\right) - 1 \\ & \geq 2\mathbb{P}\left(\forall \mathbf{u} \in \mathbf{P}_{\mathbf{x}} T_{f}^{*}\left(\mathbf{x}\right), \ \frac{\mathbf{h}^{\top} \tilde{\mathbf{u}}}{\left(\|\tilde{\mathbf{u}}\|_{2}^{2} + \frac{\pi u_{1}^{2}}{2}\right)^{1/2}} \leq \sqrt{m}(1 - \epsilon)\right) - 1 \\ & \blacktriangleright \mathbf{by} \ \left\|\|\tilde{\mathbf{u}}\|_{2}\mathbf{g} + \sqrt{m}Lu_{1}\mathbf{e}_{1}\right\|_{2} \sim \sqrt{m}\left(\|\tilde{\mathbf{u}}\|_{2}^{2} + \frac{\pi u_{1}^{2}}{2}\right)^{1/2} \\ & = 2\mathbb{P}\left(\sup_{\mathbf{u} \in \mathbf{P}_{\mathbf{x}} T_{f}^{*}\left(\mathbf{x}\right)} \frac{\mathbf{h}^{\top} \tilde{\mathbf{u}}}{\left(\|\tilde{\mathbf{u}}\|_{2}^{2} + \frac{\pi u_{1}^{2}}{2}\right)^{1/2}} \leq \sqrt{m}(1 - \epsilon)\right) - 1 \\ & \approx 2\mathbb{I}\left(\sqrt{m} \geq \frac{1}{1 - \epsilon} \mathbb{E}\sup_{\mathbf{u} \in \mathbf{P}_{\mathbf{x}} T_{f}^{*}\left(\mathbf{x}\right)} \frac{\mathbf{h}^{\top} \tilde{\mathbf{u}}}{\left(\|\tilde{\mathbf{u}}\|_{2}^{2} + \frac{\pi u_{1}^{2}}{2}\right)^{1/2}}\right) - 1 \end{split}$$

Simplification:

$$\mathbb{E}\sup_{\mathbf{u}\in\mathbf{P_{x}}T_{f}^{*}(\mathbf{x})}\frac{\mathbf{h}^{\top}\tilde{\mathbf{u}}}{\left(\|\tilde{\mathbf{u}}\|_{2}^{2}+\frac{\pi u_{1}^{2}}{2}\right)^{1/2}}=\mathbb{E}\sup_{\substack{\mathbf{u}\in T_{f}(\mathbf{x})\\ \|\mathbf{Q_{x}}\mathbf{u}\|_{2}=1}}\langle(\mathbf{I}_{n}-\mathbf{x}\mathbf{x}^{\top})\mathbf{g},\mathbf{u}\rangle=\sqrt{\zeta_{\mathrm{PO}}(f;\mathbf{x})}$$

- Phase-Only CS
- 2 Phase Transition
- 3 Explicit Formula
- 4 Simulations
- Conclusions

Connecting to Statistical Dimension

We wish to compute

$$\zeta_{\text{PO}}(\mathbf{x}; f) = \begin{bmatrix} \mathbb{E} & \sup_{\mathbf{u} \in T_f(\mathbf{x}) \\ \|\mathbf{0}_{\mathbf{x}}\mathbf{u}\| = 1} \langle (\mathbf{I}_n - \mathbf{x}\mathbf{x}^{\top})\mathbf{g}, \mathbf{u} \rangle \end{bmatrix}^2$$
(15)

• We first approximate it by statistical dimension of the descent cone of some signal-dependent norm

Lemma 4: Connect to Statistical Dimension

If we define the signal-dependent norm $f_{\mathbf{X}}(\mathbf{w}) = f(\mathbf{Q}_{\mathbf{x}}^{-1}\mathbf{w})$, then we have

$$\delta\left(T_{f_{\mathbf{X}}}(\mathbf{x})\right) - \sqrt{\frac{8\delta(T_{f_{\mathbf{X}}}(\mathbf{x}))}{\pi}} - \left(1 - \frac{2}{\pi}\right) \le \zeta_{PO}(\mathbf{x}; f) \le \delta\left(T_{f_{\mathbf{X}}}(\mathbf{x})\right).$$

Computing Statistical Dimension

• Then we compute $\delta ig(T_{f_{\mathbf{X}}}(\mathbf{x}) ig)$ by the general recipe in [ALMT14] and have the following surrogate

$$\hat{\zeta}_{PO}(\mathbf{x}; f) := \inf_{\tau > 0} \mathbb{E}\left[\operatorname{dist}^{2}(\mathbf{g}, \tau \cdot \mathbf{Q}_{\mathbf{x}}^{-1} \partial f(\mathbf{x}))\right]$$
(16)

which can often be computed more easily

21 / 30

Explicit Formula – Sparse Recovery

Theorem 2: Threshold for sparse recovery

We have

$$\zeta_{\text{PO}}(\mathbf{x}; \|\cdot\|_1) \sim n \cdot \psi\left(\frac{s}{n}, \frac{\|\mathbf{x}\|_1^2}{s}\right),$$
 (17)

where for any $(u, v) \in (0, 1) \times (0, 1]$,

$$\psi(u,v) := \inf_{\tau \ge 0} \left\{ u \left(1 + \tau^2 - \tau^2 v (1 - \frac{2}{\pi}) \right) + (1 - u) \sqrt{\frac{2}{\pi}} \int_{\tau}^{\infty} (w - \tau)^2 e^{-\frac{u^2}{2}} dw \right\}.$$
 (18)

• For recovering s-sparse x from $\mathbf{v} = \mathbf{A}\mathbf{x}$ with $\mathbf{A} \sim \mathcal{N}^{m \times n}(0,1)$, we have

$$\zeta_{\mathrm{LN}}(\mathbf{x};\|\cdot\|_1) \sim n \cdot \psi_1\left(\frac{s}{n}\right), \quad \text{where } \psi_1(u) := \inf_{\tau \geq 0} \; \left\{ u(1+\tau^2) + (1-u)\sqrt{\frac{2}{\pi}} \int_{\tau}^{\infty} (w-\tau)^2 e^{-\frac{w^2}{2}} \; \mathrm{d}w \right\}.$$

Interesting Findings

- We have $\zeta_{PO}(\mathbf{x}; \|\cdot\|_1) \leq \zeta_{IN}(\mathbf{x}; \|\cdot\|_1)$ due to $\psi(u, v) \leq \psi_1(u)$
- Unlike $\zeta_{\rm LN}$ that only depends on the sparsity s, $\zeta_{\rm PO}$ also depends on the $\|\mathbf{x}\|_1$.
- Larger $\|\mathbf{x}\|_1$ corresponds to the smaller ζ_{PO}
 - Equal amplitude s-sparse signal

$$\mathbf{x} = (s^{-1/2}, s^{-1/2}, \dots, s^{-1/2}, 0 \dots, 0)^{\top}$$

renders the earliest phase transition

Simulating $\frac{\zeta_{PO}}{\zeta_{LN}}$

We have

$$\frac{\zeta_{\text{PO}}(\mathbf{x}; \|\cdot\|_1)}{\zeta_{\text{LN}}(\mathbf{x}; \|\cdot\|_1)} \sim \frac{\psi(\frac{s}{n}, \frac{\|\mathbf{x}\|_1^2}{s})}{\psi_1(\frac{s}{n})},\tag{19}$$

so let us simulate

$$R_{sp}(u,v) = \frac{\psi(u,v)}{\psi_1(u)}, \quad (u,v) \in (0,1]^2$$
 (20)

Figure 2: The left figure plots $R_{\rm sp}(u,1)$ and $R_{\rm sp}(u,0.6)$, showing $\lim_{u\to 0^+} R_{\rm sp}(u,1) \approx 0.678$ and $\lim_{u\to 0^+} R_{\rm sp}(u, 0.6) \approx 0.808.$

Simulations •00

- 1 Phase-Only CS
- 2 Phase Transition
- 3 Explicit Formula
- 4 Simulations
- 6 Conclusions

Phase Transition Curves

Figure 3: The empirical phase transitions of recovering equal amplitude sparse vectors in \mathbb{R}^{100} are consistent with $\hat{\zeta}_{PO}(\mathbf{x};\|\cdot\|_1)$

Phase Transition Explicit Formula Simulations Conclusion O00000 O0 O0 O00 O00

Dependence on ℓ_1 Norm

Figure 4: The empirical success rates of recovering 9-sparse signals in \mathbb{R}^{300} with ℓ_1 -norm varying between [1.1,3], confirming earlier phase transitions under larger $\|\mathbf{x}\|_1$.

27 / 30

- 1 Phase-Only CS
- 2 Phase Transition
- Explicit Formula
- 4 Simulations
- 6 Conclusions

Conclusions 000

Concluding Remarks

Phase-Only CS

Our work:

- We establish phase transitions for the linearization approach in PO-CS
- We compute the phase transition locations for sparse/low-rank recovery and make interesting observations (e.g., dependence on ℓ_1 norm)
- Numerical simulations back up our theory

Future direction:

- Our current theory only holds for complex Gaussian Φ , but we numerically observed universality over other designs. How to prove this?
- We focus on noiseless case. Can we perform precise error analysis for the noisy case?

Thank You

Thank You!

