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Problem Setup

* Goal: Recover s-sparse signal xe $”~! from z=ssign(®x), ® e C"™", i.e.,
zj =sign(®; x), i€ [m (1)
* For ce C\{0} we have
c=|c|- £ magnitude- phase (2)

[l

* Let sign(o = 15

sign(cs
sign(ci)
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Motivations

¢ Applications in quantization & robustness.
* A complex version of one-bit compressed sensing
- Recover s-sparse xe S"1 from y=sign(Ax), AcR™¥" ie.,
vi= sign(a}rx), i€ m] (3)

- Optimal error rate [&-xl =6(:%) [JLBB13]!

S
m

* The opposite of phase retrieval
- Recover x from y = |®x|

1L Jacques et al, Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. TIT, 2013:
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Prior Work

* Before 2015: Studied by Boufounos; only showed approximate recovery but
numerically observed exact recovery [B13]

* Recently revisited by Jacques and coauthors:
- A linearization approach achieves exact reconstruction of sparse signals [JF21]2

2The importance of phase in complex compressive sensing. L. Jacques & T: Feuillen, TIT,-2021.
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Linearization Approach [JF21]

Linearization:

* z=sign(®x) implies

T%S(diag(z* )®)u=0

* To specify signal norm we also add

i?R(Z*(I))ll =1
m

* (5) and (4) can be concisely written as

A here A %?R(z*d))
u=ej, where Az := .
ZH= el > | 75 S(diagz") @)
Algorithm: Compute xf = Ilff\lz where
X=argmin f(u) = |lul;, subject to Azu=e;]
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A, Satisfies RIP

* ® has iid A4(0,1) +.A4(0,1)i entries

* Fix xe $"1. For cone & , we have A; ~RIP(A,0), i.e.,
lAzul3 — Iul5| <dllul3,  VYue.x. (8)

wh.p. if m>C5 202 ((# ~Rx) NS [JF21].

* Sparse recovery: When m= O(sloge—s"), then AZ~RIP(Z£'S,%), and hence under

fw = llully, x! =x w.h.p.

Question 1: Phase Transition

What is the precise number of measurements (po(x;f) needed for achieving x! =x?
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A Conjecture in [JF21]
- ./

- Success rate of S
—— Success rate of POCS
s

3 H

phase transition location of recovering x from y=Ax

* We let {{N(X;f) be the
(A~ A"™0,1)) via
min f(u)(=|ully), subject to Au=y.

* (NG f) =8(Tp) [ALMT14]3

* §(X) is the statistical dimension of cone %;

* Trx) = fueR”:3r>0 s.t. fx+rm) <f(x)}: descent cone of f at x
* A Conjecture [JF21]: {po&;f) = {IN&;f)

Question 2: The Conjecture
5

Can we rigorously prove or disprove {pg = {1N?
3Living on the edge: Phase transitions in convex programs with random data. D. Amelunxen, M. Lotz, M.
June
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Our Contributions

* We show

2

poxN=|E sup (I—xx"gu (9)

ue Tf(x)
1Qxull2=1

- Tr®={ueR":3r>0s.t. f(x+m)=<f} descent cone of f at x
S Qx=In+ (\/g- DxxT, hence Qgl =1, - (1—v2imxx"

* We derive explicit formula for {po ;| -l1)
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Our Contributions

* We disprove the conjecture and show that %‘3 <1 is bounded away from 1 in the
sparse case

* E.g., {po(x¢1)<0.75-{N(x;¢1) for 1-sparse x€ 8§99,

Cpo /G
=

o 4
& o©

4
©

o
3
a

0 200 400 600 800 1000
sparsity s

Figure 1: We fix n=1000 and plot the (approximate) curves of {pg/{{N V.s. s=1:1000 under
IIxlly = v/s, 0.7¢/s+0.3, 0.3y/5+0.7.
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Main Theorem

Theorem 1: Phase Transition Threshold

Suppose that the entries of ® are i.i.d. A4(0,1)+.4(0,1)i, and consider the recovery of a
fixed signal xe s"1 from z=sign(®x). Define

(poxf=|E sup (dp-xx"gu) (10)

ueTr(x)

Qxullz=1

There exists an absolute constant ¢, such that for any te [%,c], we have:
* If m=1+10-{po&x;f), then

]P(x’j =x) = 1—14exp(—%);

* If m=s(1-10-{po&x;f), then

]P[xu¢x)21714exp(—%),

where {po(x;f) is the quantity defined in (9).
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Conditions for Success and Failure

We first identify the conditions for success (x! =x) and failure (x! #x).

Lemm Conditions for success and failure

For a fixed xe S™1, suppose that [®x]; >0. Let f() denote a norm in R”, and assume
that Tr(x) is closed and not a subspace. Then the following two statements are correct:

* We have x! =x if

min max v'Azu>0. (11)
ueT¥ (x)veS™
f
* We have x! #x if
min max v'Azu>0. (12)

vs§mueT; (x)
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Gaussian Min-Max Theorem

We let GeR™ =D geR™ heR™ !, Sy cR™, Sy cR™, y: R xR™ — R, w= (w),W') ! €Sy
with weR”"!, and define

T'(G) := min max uTGv'v+1//[w,u),
WE Sw ueSy

Y(gh):= mi W Tu+ h'w+ ).
(g h) vyelg‘lmirelgxu IWl2g u+ llull2h’ W+y(w,u)

Assume that Sy and Sy are compact, ¥ is continuous on Sy x Sy, and G,gh have i.i.d.
standard normal entries.

Then for any ceR we have

PT(G) <c) <2P(Y(gh) <o), or PI(G)=zc)=2P(Y(gh) >c)-1.

We want to use this lemma to simplify the min-max conditions in (11) and (12)
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Near Gaussianity of A,

® The issue is that Az is non-Gaussian (otherwise [JF21] becomes trivial...)

¢ After a transformation, the non-Gaussianity only occurs in the first column

Lemma 3: Near Gaus:

ty of

Let Px be an orthogonal matrix whose first row is x'. Let
1z m iid :
L=— 2 Iy, where (L3}, ='|A4(0,1) + .4 (0, Dil,
i=1

and let G ~ A (M+Dx(n=1) g 1) be independent of L. Then we have

Td G
ap] &Ler ] (13)
L 811 81,n—1
Vm vm
0 &1 8,n-1
vm Vm
= . (14)
(.) gmjrl,l §m+i,n—1
—~ vm vm
nongaussian
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Proof Sketches

Use Gaussian min-max to simplify:

]P(xﬁ =x)= ]P( min max v'Agu> 0) » by success condition
ue T]i‘ (x)veS™

= IP( min max vTAzPIu > 0)
uePy Tf* (x) veS™

=P min max v'[ler Z|uso » by near-Gaussianit
(uEPijf (x) veS™ [ M] J Y Y
:]P( min max MLulvl +vTGﬁ20) » by u:(l,q,ﬁT)T,v:(Ul,‘?T)T
uePy Tf* (x) veS™
> ZIP( min  max IIﬁllggTv+ Ivlizh' @+ vmLuy v, > 5] -1 » by Gaussian min-max
uePy Tf* (x) veS™
:zIP( min hTﬁ+”||ﬁ||2g+\/ﬁLu1e1H >0)—1
uerT; x) 2
= 2IP(Vu € PXT; ®, h'a< H Itill2g+ vmLu; e ”2] -1 » by symmetry
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Phase Transition
000000e

Proof Sketches

Two Concentrations

P =x) > 2P(Yu e PxT} ), hTa < |lalog+ vimLue: | ) -1

h'a
=2P Vu(—:PxT;(x), 7«/%(1—5) -1
(a2 + ””1)”2

2 1
. Lo TUP\1/2
> by [iatag + vaner], v - 531

h'q
=2P sup 722_@(1—6) -1
uEPxT (%) (”~”2 1 )1/2
1 h'i
=21 \/EZI—IE sup 711 -1

—€ uerT x) (||u||2 2 )1/2
» by Gaussian concentration

Simplification:

h'a
E sup 7—113 sup ((In—xxT)g,u>:\/(po(f;x)
uePX *x) 2 1/2 ueTf(x)
(i + =) IQxulla=1
ullp=
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Connecting to Statistical Dimension

* We wish to compute

2

lpoxN=|E sup (dp—-xx"gu) (15)

ue Tf(x)
1Qxull2=1

¢ We first approximate it by statistical dimension of the descent cone of some
signal-dependent norm

Lemma 4: Connect to Statistical Dimension

If we define the signal-dependent norm fx(w) :f(Q;lw), then we have

[85(Ts (%) 2
8(Tp )~ Tﬁ‘ - (1 - ;) <{po:f) = 6(Tp ).
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Explicit Formula
[e]e] lelele)

Computing Statistical Dimension

* Then we compute 6[Tﬁ{(x)) by the general recipe in [ALMT14] and have the
following surrogate

Zpotxif) = inf E[dist* (g7 Q5 0f ) (16)

which can often be computed more easily
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Explicit Formula — Sparse Recovery

Theorem 2: Threshold for sparse recovery

We have
s I3
-l ~ ey =, — ), 1
trotal- 1) ~n-y(~, =) (17)

where for any (u,v) € (0,1) x (0,1],

) w?
Y v): = inf {u(1+t2—r2v(1—E))+(l—u)y/gf w-12e T dw}. (18)
720 2 T JT

* For recovering s-sparse x from y = Ax with A~ A4/"*"(0,1), we have

s ; 2 2 [> 2 2
(LN(x;||~||1)~n~1//1(;), where /1 (1) := inf yu(l+7%) +(1-w ;f (w-12e'T dwb.
2 T
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Interesting Findings

* We have {po®;|l-Il1) = (LN [+ 1) due to y(w,v) < y1(w)
¢ Unlike {1 that only depends on the sparsity s, {pg also depends on the [x];.

* Larger [x|l; corresponds to the smaller {pg

* Equal amplitude s-sparse signal
x= (5—1/2'5—1/2,“,Ys—l/zro,,,‘o)

renders the earliest phase transition

T
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Simulating gL—l\’I

* We have

Ix2

Zpo i) v =)
~ 2, (19)

NG -1 w1(s3;)
so let us simulate
_ vy 2

Rsp(u, v) = ok (u,v) € (0,1] (20)

Figure 2: The left figure plots Rsp(1,1) and Rsp(1,0.6), showing lim,,_ o+ Rsp(u,1) ~ 0.678 and
limu_,0+ Rsp (1,0.6) ~ 0.808.
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Phase Transition Curves

n = 100

Measurement number m

10 20 3 4 s e 70 8 % 100
Sparsity of x

Figure 3: The empirical phase transitions of recovering equal amplitude sparse vectors in R100

consistent with (po&;|l-Il1)

are
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Dependence on ¢; Norm

Measurement number m

2
[l

R300

with £1-norm varying

Figure 4: The empirical success rates of recovering 9-sparse signals in
between [1.1,3], confirming earlier phase transitions under larger |x|;.
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Concluding Remarks

Our work:
* We establish phase transitions for the linearization approach in PO-CS

* We compute the phase transition locations for sparse/low-rank recovery and make
interesting observations (e.g., dependence on ¢; norm)

¢ Numerical simulations back up our theory

Future direction:

¢ Our current theory only holds for complex Gaussian ®, but we numerically
observed universality over other designs. How to prove this?

* We focus on noiseless case. Can we perform precise error analysis for the noisy
case?
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Thank You!
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