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I. Problem Setup
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(Noisy) Group Testing

Items

Tests

Outcomes

Figure: Noiseless GT

In this talk, we consider probabilistic group testing:
▶ Defective set S ∼ Uniform

(p
k

)
(i.e., k out of p items with a uniform prior)

▶ Non-adaptive: the test design X = (Xij) ∈ {0, 1}n×p is fixed before observing
any outcome

▶ Noiseless:

Yi =
∨
j∈S

Xij (1)

▶ Noisy:

Yi =
( ∨
j∈S

Xij

)
⊕ Zi (2)

with Z ∼ Bernoulli(ρ) for some noise level ρ ∈
(
0, 1

2

)
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Recovery Criteria

▶ We consider two popular random designs:
▶ Bernoulli design: Xij

iid∼ Bernoulli( ν
k ); each item is independently placed in each

test with probability ν
k for some ν > 0

▶ Near-constant weight design: each item is independently placed in ∆ = νn
k tests

chosen uniformly at random with replacement for some ν > 0

▶ Given a decoder Ŝ, we define error probability as

Pe := P[Ŝ ̸= S]

taken w.r.t. randomness of (S,X,Z)

▶ Goal: Conditions on n for Pe → 0 in the large-system limit
▶ Sublinear sparsity: k = Θ(pθ) for θ ∈ (0, 1)

▶ Our work establishes the exact thresholds n∗ = Ck log p
k

with precise constants
C for both designs, such that:
▶ (Exact achievability)

When n > (1 + o(1))n
∗, some decoder gives Pe → 0;

▶ (Exact converse)

When n < (1− o(1))n
∗, any decoder suffers from Pe → 1
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Milestones in Noiseless GT (rate = limp→∞
log2 (

p
k)

n )
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Our Works

Approximate Recovery Line (Our Work)
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▶ Exact thresholds for bernoulli design 1 (ensemble tightness) 2

▶ Exact thresholds for NCC design and ensemble tightness 3

▶ The blue dashed curve is near optimal for arbitrary design 4

1Phase transitions in group testing, J. Scarlett and V. Cevher, 16 SODA
2The capacity of Bernoulli nonadaptive group testing, M. Aldridge, 17 T-IT
3Information-theoretic and algorithmic thresholds for group testing, A. Coja-Oghlan et al., 20 T-IT
4Optimal group testing, Coja-Oghlan et al., 20 COLT
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Noisy GT Bounds Before Our Work (ρ = 0.01)
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▶ Information-theoretic upper bounds that are tight for very small values of θ [SC16]
▶ The information-theoretic upper bound is an attempt to exact thresholds under

Bernoulli design 5

▶ Compared to the noiseless case, the prior work is much less complete!

5Noisy non-adaptive group testing: A (near-)definite defectives approach, J. Scarlett and O.
Johnson, 20 T-IT
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II. Exact Thresholds
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Graphical Illustration of Our Exact Thresholds (ρ = 0.01)
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▶ The best exisiting efficient algorithms fall short of information theoretic thresholds
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Preliminaries
Notation:

a ⋆ b = ab+ (1− a)(1− b) (3)

D(a∥b) = a log
(a
b

)
+ (1− a) log

(1− a

1− b

)
(4)

H2(a) = a log
( 1

a

)
+ (1− a) log

( 1

1− a

)
(5)

Technical Lemma: Tight chernoff bound for binomial variable

Consider X ∼ Bin(N, q), then we have
▶ Chernoff bound:

P
(
X ≤ k

)
≤ exp

(
−N ·D

( k
N

∥∥q)), if k ≤ Nq (6)

P
(
X ≥ k

)
≤ exp

(
−N ·D

( k
N

∥∥q)), if k ≥ Nq (7)

▶ Anti-concentration:

P(X = k) ≥
1

2
√

2k(1− k
N
)
exp

(
−N ·D

( k
N

∥∥q))
︸ ︷︷ ︸

often =exp
(
−N·

[
D
(

k
N

∥q
)
+o(1)

])
, k = 1, 2, ..., N − 1 (8)
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Thresholds for Bernoulli Designs

Thresholds for Bernoulli design with i.i.d. Bernoulli( ν
k
) entries:

n
∗
Bern = max

{
k log p

k

H2(e−ν ⋆ ρ)−H2(ρ)
, (first branch)

k log p
k

(1− θ)νe−ν min C>0
ζ∈(0,1)

max{ 1
θ f

Bern
1 (C, ζ, ρ), fBern

2 (C, ζ, ρ)}
(second branch)

 ,

f
Bern
1 (C, ζ, ρ) = C logC − C + C ·D(ζ∥ρ) + 1,

f
Bern
2 (C, ζ, ρ) = min

d≥max{0,C(1−2ζ)/ρ}
g
Bern

(C, ζ, d, ρ),

g
Bern

(C, ζ, d, ρ) = ρd log d +
(
ρd− C(1− 2ζ)

)
log
(ρd− C(1− 2ζ)

1− ρ

)
+ 1− 2ρd + C(1− 2ζ)

recall some notation:
▶ p items, k defectives, k ∼ pθ

▶ ν: design parameter
▶ ρ: noise level
▶ C, ζ: optimization parameters
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Thresholds for Near-Constant Weight Designs

Thresholds for near-constant weight design with ∆ = νn
k

placements per item:

n
∗
NC = max

{
k log p

k

H2(e−ν ⋆ ρ)−H2(ρ)
, (first branch)

k log p
k

(1− θ)νe−ν minC∈(0,eν ),ζ∈(0,1) max{ 1
θ f

NC
1 (C, ζ, ρ, ν), fNC

2 (C, ζ, ρ, ν)}
(second branch)

}
,

f
NC
1 (C, ζ, ρ, ν) = e

ν
D(Ce

−ν∥e−ν
) + C ·D(ζ∥ρ),

f
NC
2 (C, ζ, ρ, ν) = min

d : |C(1−2ζ)|≤d≤eν
g
NC

(C, ζ, d, ρ, ν),

g
NC

(C, ζ, d, ρ, ν) = e
ν ·D

(
de

−ν∥e−ν)
+ d ·D

( 1

2
+

C(1− 2ζ)

2d

∥∥ρ).
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High-level Intuitions
Two branches appear in the final thresholds:

1. The common first branch k log(p/k)

H2(e−ν⋆ρ)−H2(ρ)
is related to the Shannon capacity of

the binary symmetric channel.
▶ Established by analyzing ℓ = |Ŝ \ S| = k (high ℓ, low overlap)

Figure: |Ŝ \ S| = k

2. The more complicated second branches involve f1 and f2:
▶ Established by analyzing ℓ = |Ŝ \ S| = 1 (low ℓ, high overlap)
▶ The optimization constants (C, ζ, d) that are introduced to characterize certain

quantities in the error events.

Figure: |Ŝ \ S| = 1
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III. Proofs for Converse
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The First Branch k log(p/k)
H2(e−ν⋆ρ)−H2(ρ)

Intuition:
▶ The test has probability about e−ν of containing no defectives;
▶ (Roughly) e−ν ⋆ ρ of being positive;
▶ Thus, each test can only reveal H2(e−ν ⋆ ρ)−H2(ρ) bits of information;
▶ With

(p
k

)
possible defective sets, we need (roughly) log

(p
k

)
∼ k log p

k
bits;

comparing them gives the capacity branch.

Sketch of technical argument:
▶ For any δ1 > 0, we have [SC16]

Pe ≥ P
(
ın(Xs,Y) ≤ log

(
δ1
(p
k

)))
− δ1 (9)

≈ P
(
ın(Xs,Y) ≤ k log

(p
k

))
(10)

where ın(Xs,Y) = log
P(Y|Xs)

P(Y)
= log P(Y|Xs)− log P(Y).

▶ Establish upper concentration bound for ın(Xs,Y) by separately analyzing
log P(Y|Xs) and log P(Y).
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The Second Branch – Failure of MLE

Challenge:
▶ This kind of terms appeared in thresholds for noiseless case, based on such a

central idea:
if a defective item is masked (Definition: every test it is in also contains at least
one other defective), then even an optimal decoder will be unable to identify it.

Items

Tests

Outcomes

Figure: The last two defectives are masked

▶ However, this is no longer the dominant error event in the noisy case, thus cannot
be used to derive the exact/tight converse bounds
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The Second Branch – Failure of MLE

Ideas:
▶ MLE is the optimal decoding strategy, and we only need to show MLE fails when
n is below n∗;

▶ Given (X,Y), the likelihood of an estimate s is

LX,Y(s) = ρNX,Y(s)(1− ρ)n−NX,Y(s) (11)

where NX,Y(s) denotes the number of “correct tests”
▶ Error event: for some defective j and nondefective j′ it holds that have

NX,Y

(
(S \ {j}) ∪ {j′}︸ ︷︷ ︸

:=Ŝ

)
> NX,Y

(
S
)

⇐⇒ NX,Y(Ŝ)−NX,Y(S) > 0 (12)
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The Second Branch – Failure of MLE

Ŝ = (S \ {j}) ∪ {j′}

Counting:

▶ Only two types of tests contribute to NX,Y(Ŝ) and NX,Y(S) differently:

contain j as the only defective but not contain j
′
{
positive (I1) : NX,Y(S)← NX,Y(S) + 1

negative (I2) : NX,Y(Ŝ)← NX,Y(Ŝ) + 1

(13)

contain no defective but contain j
′
{
positive (I3) : NX,Y(Ŝ)← NX,Y(Ŝ) + 1

negative (I4) : NX,Y(S)← NX,Y(S) + 1
(14)

▶ Failure condition:

NX,Y(Ŝ)−NX,Y(S) > 0 =⇒ I2 + I3 > I1 + I4 (15)
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The Second Branch – Failure of MLE

Analytical formulation:
▶ Notation:

▶ Mj : tests in which j is the only defective
▶ N0: tests containing no defective
▶ Mj1 (Mj0): the positive (negative) tests inMj
▶ N01 (N00): the positive (negative) tests in N0
▶ Gj,j′,1: number of tests in N01 ∪Mj1 that contain j′

▶ Gj,j′,2: number of tests in N00 ∪Mj0 that contain j′

▶ For some (C, ζ) ∈ (0,∞)× (0, 1) such that Cnνe−ν

k
, ζ·Cnνe−ν

k
∈ Z we have

▶ (C1) There exists some j ∈ S such that

Mj = |Mj | =
Cnνe−ν

k
(16)

Mj0 = |Mj0| = ζ ·Mj (17)

▶ (C2) Failure condition: For some j′ ∈ [p] \ S,

I2 + I3 > I1 + I4 =⇒ Gj,j′,1 −Gj,j′,2 > (1− 2ζ)
Cnνe−ν

k
(18)
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The Second Branch – Failure of MLE

The second branch takes the form k log(p/k)

(1−θ)νe−ν minC,ζ max{ f1
θ

,f2}

Step I. Ensuring (C1) leads to f1:

▶ (C1) for some j ∈ S, Mj = Cnνe−ν

k
and Mj0 = ζ · Cnνe−ν

k

▶ Challenge lies on Mj

▶ (Bernoulli) Poisson approximation for the multinomial distribution(
M1,M2, · · · ,Mkξ

)
(19)

▶ (Near-Constant)
▶ Work with a surrogate of Mj—

M ′
j : the number of tests in which j is the only defective and is placed exactly once

▶ Interpret the placements of items into tests as edges in a bipartite graph [CGHL20],
and use symmetry to show (M ′

1,M
′
2, · · · ,M

′
kξ ) obeys

M
′
1 ∼ Hg(k∆, e

−ν
k∆,∆)

M
′
2|M

′
1 ∼ Hg(k∆, e

−ν
k∆,∆)

· · · (20)

M
′
kξ

∣∣(M ′
1,M

′
2, · · · ,M

′
kξ−1

)
∼ Hg(k∆, e

−ν
k∆,∆)
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The Second Branch – Failure of MLE

The second branch takes the form k log(p/k)

(1−θ)νe−ν minC,ζ max{ f1
θ

,f2}

Step II. Ensuring (C2) leads to f2:

▶ (C2): Gj,j′,1 −Gj,j′,2 > (1− 2ζ)Cnνe−ν

k

▶ This comes down to the analysis of the difference of two independent binomial
random variables, and can be handled by anti-concentration

▶ Many technical challenges/details omitted ...

Step III. Optimizing (C, ζ)

▶ (C1) and (C2)
▶ Optimizing (C, ζ) to establish the strongest converse bound
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IV. Proofs for Achievability
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Information density Decoder in [SC16]

Existing Information density decoder (Scarlett & Cevher, 16 SODA):
▶ We assume S = s is the defective set
▶ We consider partitioning s into (sdif , seq) with sdif ̸= ∅, and define for each sdif

the information density as

ın(Xsdif ;Y|Xseq ) := log
P(Y|Xsdif ,Xseq )

P(Y|Xseq )
. (21)

▶ Its expectation depends only on ℓ := |sdif | and is defined as

E
[
ın(Xsdif ;Y|Xseq )

]
:= I(Xsdif ;Y|Xseq ) := Inℓ (22)

▶ Information density decoder:
▶ Fix the constants {γℓ}kℓ=1, and search for a set s of cardinality k such that

ı
n
(Xsdif

;Y|Xseq ) ≥ γ|sdif |, ∀(sdif , seq) such that |sdif | ̸= 0. (23)

▶ Intuition: ın(Xsdif ;Y|Xseq ) tends to be high for the actual defective set s;
▶ Limitation: Analyzing this decoder under small ℓ leads to sub-optimal threshold

for noisy GT.
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Our hybrid decoding rule

▶ We resort to MLE for low-ℓ case

▶ Hybrid Decoder: We search for a set ŝ of cardinality k that satisfies
▶ (Low ℓ: MLE) It holds that

LX,Y(ŝ) > LX,Y(s
′
), ∀s′ such that 1 ≤ |ŝ \ s′| ≤

k

log k
, (24)

where we implicitly also constrain s′ to have cardinality k.

▶ (High-ℓ: information density) For suitably chosen {γℓ} k
log k

<ℓ≤k
, it holds that

ı
n
(Xsdif

;Y|Xseq ) ≥ γ|sdif |, ∀(sdif , seq) such that |sdif | >
k

log k
, (25)

where (sdif , seq) is a disjoint partition of ŝ.
▶ Success conditions:

▶ Success condition for Low-ℓ:

(24) holds for ŝ = s (26)

▶ Success condition for high-ℓ:

(25) holds for ŝ = s (27)

∀s̃ with |s̃| = k, |s \ s̃| >
k

log k
, it holds that ı

n
(Xs̃\s;Y|Xs̃∩s) < γ|s\ŝ| (28)
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The First Branch k log(p/k)
H2(e−ν⋆ρ)−H2(ρ)

▶ Starting point: [SC16] for any δ1 > 0, P
(
(27)&(28) fail

)
≤

P
[ ⋃

(sdif ,seq) : |sdif |≥ℓmin

{
ı
n
(Xsdif

;Y|Xseq ) ≤ log
(p− k

|sdif |

)
+ log

(
k

δ1

( k

|sdif |

))}]
+ δ1

δ1→0
≈ P

[ ⋃
(sdif ,seq) : |sdif |≥ℓmin

{
ı
n
(Xsdif

;Y|Xseq ) ≤ (1 + o(1))ℓ log
( p

k

)}]
(29)

▶ Concentration bound: for any δ2 ∈ (0, 1),

P
[
ın(Xsdif ;Y|Xseq ) ≤ (1− δ2)I

n
ℓ

]
≤ ψℓ(n, δ2), (30)

▶ Therefore, if it holds that

max
ℓ> k

log k

(1 + o(1))ℓ log( p
k
)

Inℓ (1− δ2)
≤ 1, (31)

we are able to enforce

P
(
(27)&(28) fail

)
≤

k∑
ℓ=ℓmin

(k
ℓ

)
ψℓ(n, δ2) → 0 (32)

▶ Combining with the asymptotic of scaling of Inℓ , (31) yields n ≥ the first branch
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The Second Branch – Success of MLE

▶ The second branch, k log(p/k)

(1−θ)νe−ν minC,ζ max{ f1
θ

,f2}
, is used to ensure

LX,Y(s) > LX,Y(s′), ∀s′ such that 1 ≤ |s \ s′| ≤
k

log k
(33)

so that the MLE part succeeds.
▶ Similar arguments with nontrivial generalizations

Preparations:
▶ LX,Y(s) > LX,Y(s′) ⇐⇒ NX,Y(s) > NX,Y(s′)

▶ J = s \ s′ (defective) and J ′ = s′ \ s (non-defective)
▶ Only two types of tests matter

only contain defectives in J but not contain items in J ′
{
positive (I1) : NX,Y(s) + +

negative (I2) : NX,Y(s′) + +

(34)

contain no defective but contain items from J
{
positive (I3) : NX,Y(s′) + +

negative (I4) : NX,Y(s) + +
(35)

▶ Success condition: NX,Y(s) > NX,Y(s′) =⇒ I1 + I4 > I2 + I3
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The Second Branch – Success of MLE

Analytical formulation:
▶ Notation:

▶ MJ : tests in which items in J are the only defectives
▶ MJ1(MJ0): the positive (negative) tests inMJ
▶ N0,N00,N01: as before
▶ GJ ,J′,1 : number of tests in N01 ∪MJ1 that contain some item from J ′

▶ GJ ,J′,2 : number of tests in N00 ∪MJ0 that contain some item from J ′

▶ For any ℓ ≤ k
log k

and any pairs of (C, ζ) ∈ [0,∞)× [0, 1] such that
Cnνe−νℓ

k
, ζ·Cnνe−νℓ

k
∈ Z, one of the following conditions hold:

▶ (C1) Kℓ,C,ζ = ∅ where

Kℓ,C,ζ =
{
J ⊂ s : |J | = ℓ,MJ =

Cnνe−νℓ

k
, MJ0 =

ζ · Cnνe−νℓ

k

}
(36)

▶ (C2) If Kℓ,C,ζ ̸= ∅, then for any J ∈ Kℓ,C,ζ and J ′ ⊂ [p] \ s and |J ′| = ℓ,

I1 + I4 > I2 + I3 ⇐⇒ GJ ,J′,1 −GJ ,J′,2 < (1− 2ζ)
Cnνe−νℓ

k
(37)
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The Second Branch – Success of MLE

The second branch takes the form k log(p/k)

(1−θ)νe−ν minC,ζ max{ f1
θ

,f2}

Overview:
▶ Step 1. Ensuring (C1) yields the f1 part of the second branch

▶ Unlike in the converse, we utilize a first-order method which first bounds

E|Kℓ,C,ζ | =
(k
ℓ

)
P
(

for fixed J ⊂ s with |J | = ℓ, MJ =
Cnνe−νℓ

k
, MJ0 = ζMJ

)
(38)

and then utilize Markov’s inequality to enforce |Kℓ,C,ζ | = 0

▶ Step 2. Ensuring (C2) yields the f2 part of the second branch. More
complicated than the converse as we need to handle all (ℓ, C, ζ)
▶ Working with the sum/difference of two independent binomial variables

▶ Step 3. Optimizing over (C, ζ)
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Summary & Future Directions

Summary:

▶ We established exact thresholds for noisy group testing with Bernoulli design and
near-constant weight design

▶ For converse analysis, the main innovation is to identify a novel set of dominant
error events

▶ For achievablity analysis, we introduce a hybrid decoder that combines the
exsiting information density approach and MLE

Future Directions:

1. Efficient and Optimal Algorithm: Devise an efficient algorithm to achieve the
exact thresholds for near-constant weight design.
▶ A concurrent work solved this problem via spatial coupling designs.6

2. Converse for Arbitrary Design: Investigate whether the n∗
NC is the general

converse for arbitrary design.
▶ This is true in the noiseless case [CGHL20]

Thank You
6Noisy group testing via spatial coupling, Coja-Oghlan et al., Comb. Probab. Comput.,

2024


