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|. Problem Setup



(Noisy) Group Testing

Tests

=

Outcomes

Items

In this talk, we consider probabilistic group testing:

| 2
>

>

Defective set S ~ Uniform (’,Z) (i.e., k out of p items with a uniform prior)
Non-adaptive: the test design X = (X;;) € {0,1}"*P is fixed before observing
any outcome
Noiseless:
Yi=V Xy (1)
jeSs

Noisy:

Yi=(V Xy) @z &)

j€s

with Z ~ Bernoulli(p) for some noise level p € (0, %)



Recovery Criteria

» We consider two popular random designs:

» Bernoulli design: X;; i Bernoulli(¥); each item is independently placed in each
test with probability ¥ for some v > 0

P Near-constant weight design: each item is independently placed in A = it tests
chosen uniformly at random with replacement for some v > 0

> Given a decoder S, we define error probability as
P.:=P[S # 9]
taken w.r.t. randomness of (S, X, Z)

» Goal: Conditions on n for Pe — 0 in the large-system limit

> Sublinear sparsity: k = ©(p?) for 6 € (0,1)

» Our work establishes the exact thresholds n* = Ck log % with precise constants
C for both designs, such that:

> (Exact achievability)
When n > (1 + o(1))n™, some decoder gives P. — 0;

P> (Exact converse)

When n < (1 — o(1))n™, any decoder suffers from P, — 1
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> Exact thresholds for bernoulli design 1 (ensemble tightness) 2
» Exact thresholds for NCC design and ensemble tightness 3

» The blue dashed curve is near optimal for arbitrary design 4

1Phase transitions in group testing, J. Scarlett and V. Cevher, 16 SODA
2The capacity of Bernoulli nonadaptive group testing, M. Aldridge, 17 T-IT

3 |nformation-theoretic and algorithmic thresholds for group testing, A. Coja-Oghlan et al., 20 T-IT
4 Optimal group testing, Coja-Oghlan et al., 20 COLT



Noisy GT Bounds Before Our Work (p = 0.01)

Capacity Bound
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> Information-theoretic upper bounds that are tight for very small values of 6 [SC16]

» The information-theoretic upper bound is an attempt to exact thresholds under
Bernoulli design >

» Compared to the noiseless case, the prior work is much less complete!

5Noisy non-adaptive group testing: A (near-)definite defectives approach, J. Scarlett and O.
Johnson, 20 T-IT



Il. Exact Thresholds



Graphical lllustration of Our Exact Thresholds (p = 0.01)
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> The best exisiting efficient algorithms fall short of information theoretic thresholds



Preliminaries

Notation:
axb=ab+ (1 —a)(1—0b) 3)
1—
Dial}p) = alog (3 ) + (1~ a)log (1= ) )
1 1
Hg(a):alog(g>-I—(l—a)log(l_a) (5)
Technical Lemma:
Consider X ~ Bin(J, g), then we have
» Chernoff bound:
k .
]P’(XSk)SeXp(—N‘D(NHq)), if k < Ngq (6)
k .
IP’(XZk)Sexp(—N-D(NHq)), if k > Ng )
» Anti-concentration:
P(X = k) > ;exp(—N.D(%Hq)), k=1,2,.,N—1 (8)

2 /2k(1 - k)

often =exp (7N< [D(% HQ)+O(1)})




Thresholds for Bernoulli Designs

Thresholds for Bernoulli design with i.i.d. Bernoulli(%) entries:

klog £
H(e=¥ % p) — H2(p)’

NBern = Max { (first branch)

klog £

(1 —6)er milﬂgec(io1> max{ 5 fP°™(C, ¢, p), f7°(C, ¢, p)}

lecm(C,C,p) =ClogC —C+C-D(|lp) +1,
Born . Bern
C, ¢ p) = o €6 d,p),
25, ¢, p) a>max{0.C(1—2¢)/p3 7 (@ dp)

pd — C(1 —2¢)
1—0p

(second branch) » ,

g (C, ¢, d, p) = pdlogd + (pd — C(1 — 2¢)) log( ) +1—2pd+ C(1—2¢)

recall some notation:
» p items, k defectives, k ~ p6
» v: design parameter
» p: noise level

» C,(: optimization parameters



Thresholds for Near-Constant Weight Designs

Thresholds for near-constant weight design with A = % placements per item:
klog £
Hy (e~ * p) — Hz(p)
klog £
(1 = 8)ve=v minge(o,ev).ce(o,1) max{ g 1 °(C, ¢, p,v), FYC(C, ¢ p,v)}
IY(C, ¢ pv) = e"D(Ce™ " |le™") + C - D(¢llp),
£ ¢ pv) = g¥C ¢ dipyv),

v —vy(—v 1. ¢c@-29)
gV (C, ¢ d,pv) = e’ - D(de” |l )+d-D(5+THP)~

nyc = max { , (first branch)

(second l)ranch)} ,

min
d:|C(1-2¢)|<d<e”



High-level Intuitions

Two branches appear in the final thresholds:

klog(p/k)
Ha(e=V*p)—Hz2(p)
the binary symmetric channel.

> Established by analyzing £ = |S \ S| = k (high ¢, low overlap)

1. The common first branch is related to the Shannon capacity of

2. The more complicated second branches involve f1 and fa:
> Established by analyzing £ = |5\ S| = 1 (low £, high overlap)

» The optimization constants (C, ¢, d) that are introduced to characterize certain
quantities in the error events.



I1l. Proofs for Converse



. klog(p/k)
The First Branch m

Intuition:
» The test has probability about e~ of containing no defectives;
> (Roughly) e™" * p of being positive;
» Thus, each test can only reveal Ha(e™" x p) — Ha(p) bits of information;

> With (?) possible defective sets, we need (roughly) log (}) ~ klog £ bits;
comparing them gives the capacity branch.

Sketch of technical argument:
» For any 61 > 0, we have [SC16]

P> [P’(z”(XS,Y) < log (51 (Z))) — 5 (9)
zP(z”(Xs,Y) < klog (z)) (10)

P(Y|Xs)
P(Y)

» Establish upper concentration bound for 1" (Xs,Y) by separately analyzing
logP(Y|Xs) and log P(Y).

where 1" (X, Y) = log =1logP(Y|Xs) — log P(Y).



The Second Branch — Failure of MLE

Challenge:

> This kind of terms appeared in thresholds for noiseless case, based on such a
central idea:
if a defective item is masked (i.e., every test it is in also contains at least one
other defective), then even an optimal decoder will be unable to identify it.

» However, this is no longer the dominant error event in the noisy case, thus cannot
be used to derive the exact/tight converse bounds

Ideas:

» MLE is the optimal decoding strategy, and we only need to show MLE fails when
n is below n*;

> Given (X,Y), the likelihood of an estimate s is
Lx v (s) = pNxx () (1 — pyn=Nxx(®) (11)

where Nx vy (s) denotes the number of “correct tests”

» Error event: for some defective j and nondefective j’ it holds that have

Nx v ((S\{GHU{i'}) > Nx v (S) <= Nxv(5) - Nxv(S)>0 (12)

=5



The Second Branch — Failure of MLE

S=(S\{jHu{si'}
Counting:
> Only two types of tests contribute to Nx7y(§) and Nx v (S) differently:
positive (I1) : Nx,v(S) < Nx,v(S)+1

negative (I2) : Nx,y(g) — Nx)y(g) +1
(13)

contain j as the only defective but not contain 5’ {

positive (I3) : Nx,y(5) + Nx v(S) +1

negative (I4) : Nx v (S) + Nx v (S)+1 (14)

contain no defective but contain 5’ {

» Failure condition:

Nxy(S) = Nxv(S)>0= I+ 13> 1 + 14 (15)



The Second Branch — Failure of MLE

Analytical formulation:
> Notation:

M : tests in which j is the only defective

No: tests containing no defective

M1 (Mjo): the positive (negative) tests in M

No1 (Noo): the positive (negative) tests in Ny

number of tests in No; U M1 that contain j’
number of tests in Nop U M o that contain j’

VVVYVYVYY

PV

Gj i1 ot
Cnve™ " (-Cnve ¥
> For some (C, () € (0,00) x (0,1) such that =#25—, >=2-=— € Z we have
P (C1) There exists some j € S such that

Cnve™"

a; = ) = (16)
Mjo = [Mjo| = ¢ - M, an

> (C2) Failure condition: For some j’ € [p] \ S,
Lt s> L4 L= Gy — Gy >(1—20" " (g)

k



The Second Branch — Failure of MLE

The second branch takes the form klog(p/k) 7
(1-60)ve~" ming, ¢ max{ Tl Jfa}

Step |. Ensuring (C1) leads to fi:

» (C1) for some j € S, M; :%E_U and MjO:Q%e_U
» Challenge lies on M

> (Bernoulli) Poisson approximation for the multinomial distribution

(M17M27"' 7Mk§) (19)
> (Near-Constant)

> Work with a surrogate of M;—
]VIJ/.: the number of tests in which j is the only defective and is placed exactly once

P Interpret the placements of items into tests as edges in a bipartite graph [CGHL20],
and use symmetry to show (M, M5, - - - ,JW;E) obeys

M, ~ Hg(kA,e "kA, A)
My | M| ~ Hg(kA, e VkA, A)
. (20)
M| (M{, My, , M, ) ~Hg(kA, e "kA, A)



The Second Branch — Failure of MLE

klog(p/k)

The second branch takes the form 7
1-0)ve~" ming ¢ ma,x{Tl Jfa}

Step Il. Ensuring (C2) leads to f5:

> (C2): Gy i1 —Gjjro > (1—2¢)Cnre”

> This comes down to the analysis of the difference of two independent binomial
random variables, and can be handled by anti-concentration

»> Many technical challenges/details omitted ...

Step Ill. Optimizing (C, ()
> (C1) and (C2)
> Optimizing (C, () to establish the strongest converse bound



IV. Proofs for Achievability



Information density Decoder in [SC16]

Existing Information density decoder (Scarlett & Cevher, 16 SODA):
> We assume S = s is the defective set
» We consider partitioning s into (sqif, Seq) With sqif # @, and define for each sq;if
the information density as

]P)(lesdif ’ Xch)

"(Xsgie; YX =1 21
V" (Xsgir | Seq) og P(Y|Xseq) (21)

> Its expectation depends only on £ := |sgi¢| and is defined as
]E[Zn(xsdif;Yl)(ch)] = (Xsgip; Y1 Xseq) =17 (22)

» Information density decoder:
P Fix the constants {'yg}le, and search for a set s of cardinality k such that

177'(X5dif; Y (Xseq) = Visqiels  V(saif, Seq) such that [saie| # 0. (23)

v

Intuition: ¢ (X, ;;; Y|Xs,,) tends to be high for the actual defective set s;

v

Limitation: Analyzing this decoder under small ¢ leads to sub-optimal threshold
for noisy GT.



Our hybrid decoding rule

» We resort to MLE for low-£ case
»> Hybrid Decoder: We search for a set § of cardinality k that satisfies
» (Low ¢: MLE) It holds that

k
Lxv(8) > Lx v(s'), Vs suchthat1<[3\s'|< gk’ (24)

where we implicitly also constrain s’ to have cardinality k.

P (High-¢: information density) For suitably chosen {v¢} & <¢<p it holds that
Togk <=

1 (Ksgips YIXseq) = Vsgiel>  V(Saits Seq) such that [sair| > &, (25)
where (sgif, Seq) is a disjoint partition of 5.
> Success conditions:
P Success condition for Low-¢:
(24) holds for § = s (26)
P Success condition for high-¢:
(25) holds for § = s (27)

s - k. n
V3§ with |5] =k, |s\ 3| > Togh’ it holds that 2" (Xz\s; Y|Xzns) < vjs\5) (28)



- ___klog(p/k)
The First Branch Hale Vxp)—Ha(p)

> Starting point: [SC16] for any 61 > 0, P((27)&(28) fail) <

n ‘ p—k k, k
d| U {1 ¥ <tos (0 Y o (1 ()] 4

(saif seq) : 15dif| 2€min

51 —0
'~ IP’[

{77 Regirs ¥1% o) < 1 00108 (2) ] (29)
(sdif>seq) : 19dif |2 lmin

> Concentration bound: for any é2 € (0,1),
P[ln(xsdif§leseq) S (1 - 52)1;] S 7/)2(7% 52)7 (30)
» Therefore, if it holds that

(1+o(1))log(%)

max ——————— = <1, 31
>k IP(1=62) T (1)
we are able to enforce
kok
P((27)&(28) fail) < HZ (Z)W(n,(b) 50 (32)

> Combining with the asymptotic of scaling of I}, (31) yields n > the first branch



The Second Branch — Success of MLE

» The second branch, klog(p/k) , is used to ensure
1-0)ve~" ming, ¢ max{ 71 ,f2

k
Lxv(s)>Lxy(s"), Vs suchthat1<|s\s'|< ook (33)
og

so that the MLE part succeeds.

» Similar arguments with nontrivial generalizations

Preparations:
> Lx,v(s) > Lx,y(s) <= Nx,v(s) > Nx,y(s)
> J = s\ s’ (defective) and J' = s’ \ s (non-defective)
» Only two types of tests matter
positive (I1) : Nx v (s) + +

negative (I2) : Nx v(s') ++
(39)

only contain defectives in J but not contain items in 7’ {

positive (I3) : Nx, v (s') + +

negative (I4) : Nx v (s) ++ (35)

contain no defective but contain items from J {

» Success condition: Nx v (s) > Nx v (s') = I1 + 14> 1>+ I3



The Second Branch — Success of MLE

Analytical formulation:
> Notation:
P> M7 : tests in which items in J are the only defectives
> M71(M70): the positive (negative) tests in M 7
> No, Noo, Noi: as before
> G 7 77,1 : number of tests in No1 U M 71 that contain some item from J’

> G 7. 772 : number of tests in Noo U M 70 that contain some item from J’
» For any ¢ < @ and any pairs of (C,() € [0,00) x [0, 1] such that

Cm’;iyé, C'aneiue € Z, one of the following conditions hold:

> (C1) K¢,c,c = @ where

Cnve™ "4 - Cnre™"{
Koo = {J Cs: |Jl=6LMg=—"7——, Mgo= 47} (36)
k k
> (C2) If K¢,c,c # @, then for any J € K¢,c,c and J' C [p]\ s and |T'| = ¢,
Cnve™ "4
ht+la>h+ly < Gy 50 -Gz <(1- 2¢) ———— (37)

k



The Second Branch — Success of MLE

klog(p/k)

The second branch takes the form . 7
(1—=0)ve~" ming ¢ max{ . f2}

Overview:
> Step 1. Ensuring (C1) yields the fi part of the second branch

P Unlike in the converse, we utilize a first-order method which first bounds

Cnve™ "l

w0 Mao=CMg

k
ElKe,c.c] = ([)]P’ (for fixed 7 C s with |J| = £, Mg =
(38)
and then utilize Markov's inequality to enforce |y ¢ ¢c| =0

> Step 2. Ensuring (C2) yields the fo part of the second branch. More
complicated than the converse as we need to handle all (¢,C,¢)

P Working with the sum/difference of two independent binomial variables

> Step 3. Optimizing over (C, ()



Summary & Future Directions

Summary:

> We established exact thresholds for noisy group testing with Bernoulli design and
near-constant weight design

> For converse analysis, the main innovation is to identify a novel set of dominant
error events

» For achievablity analysis, we introduce a hybrid decoder that combines the
exsiting information density approach and MLE

Future Directions:

1. Efficient and Optimal Algorithm: Devise an efficient algorithm to achieve the
exact thresholds for near-constant weight design.

> A concurrent work solved this problem via spatial coupling designs.®

2. Converse for Arbitrary Design: Investigate whether the ny - is the general
converse for arbitrary design.

P This is true in the noiseless case [CGHL20]

Thank You

SNoisy group testing via spatial coupling, Coja-Oghlan et al., Comb. Probab. Comput.,
2024



